
Post-Quantum Signatures
from MPC in the Head

Matthieu Rivain

PQ-TLS Summer School

Jun 19, 2024, Anglet

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y
Signature scheme

x
Hash

function

msg

signature

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y
Signature scheme

x
Hash

function

msg

signature

MPC in the Head

Roadmap

• MPC-in-the-Head with Additive Secret Sharing

• Optimisations

• SDitH Signature Scheme: MPCitH with Syndrome Decoding

• MPC-in-the-Head with Threshold Secret Sharing

MPC-in-the-Head with
 Additive Secret Sharing

MPC model

[[x]]1
[[x]]2

[[x]]3

[[x]]4

[[x]]5

• Jointly compute

• private: the views of any
parties provide no information on

• Semi-honest model: assuming that the
parties follow the steps of the protocol

• Broadcast model

‣ Parties locally compute on their shares

‣ Parties broadcast and recompute

‣ Parties start again (now knowing)

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

(N − 1) N − 1
x

[[x]] ↦ [[α]]

[[α]] α

α

[[x]]1
[[x]]2

[[x]]3

[[x]]4

[[x]]5

• Jointly compute

• private: the views of any
parties provide no information on

• Semi-honest model: assuming that the
parties follow the steps of the protocol

• Broadcast model

‣ Parties locally compute on their shares

‣ Parties broadcast and recompute

‣ Parties start again (now knowing)

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

(N − 1) N − 1
x

[[x]] ↦ [[α]]

[[α]] α

α

Public
domain

MPC model

 [[x]]1
[[α]]1 = φ([[x]]1)

𝒫1 𝒫2 𝒫N

⋯ [[x]]2
[[α]]2 = φ([[x]]2)

 [[x]]N
[[α]]N = φ([[x]]N)

[[α]]1 [[α]]2 [[α]]N+ + ⋯ + = α

public
recovery

linear
function φ

 [[x]]1
[[α]]1 = φ([[x]]1)

𝒫1 𝒫2 𝒫N

⋯ [[x]]2
[[α]]2 = φ([[x]]2)

 [[x]]N
[[α]]N = φ([[x]]N)

[[α]]1 [[α]]2 [[α]]N+ + ⋯ + = α

[[β]]1 = ψ(α, [[x]]1) [[β]]2 = ψ(α, [[x]]2) [[β]]N = ψ(α, [[x]]N)

[[β]]1 [[β]]2 [[β]]N+ + ⋯ + = β

public
recovery

linear
function φ

linear
function ψ

public
recovery

 [[x]]1
[[α]]1 = φ([[x]]1)

𝒫1 𝒫2 𝒫N

⋯ [[x]]2
[[α]]2 = φ([[x]]2)

 [[x]]N
[[α]]N = φ([[x]]N)

[[α]]1 [[α]]2 [[α]]N+ + ⋯ + = α

[[β]]1 = ψ(α, [[x]]1) [[β]]2 = ψ(α, [[x]]2) [[β]]N = ψ(α, [[x]]N)

[[β]]1 [[β]]2 [[β]]N+ + ⋯ +

and so on… g : (y, α, β, …) ↦ {Accept

Reject

 = β

public
recovery

linear
function φ

linear
function ψ

public
recovery

 [[x]]1
[[α]]1 = H ⋅ [[x]]1

𝒫1 𝒫2 𝒫N

⋯ [[x]]2
[[α]]2 = H ⋅ [[x]]2

 [[x]]N
[[α]]N = H ⋅ [[x]]N

[[α]]1 [[α]]2 [[α]]N+ + ⋯ + = α

 g(y, α) = {Accept if y = α
Reject if y ≠ α

public
recovery

mult. by
is linear

H

Example: matrix multiplication y = Hx

 g(y, α) = Accept ⟺ Hx = y

MPCitH transform

Prover Verifier

MPCitH transform

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

MPCitH transform

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

MPCitH transform

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

③ Chose a random party
i* ←$ {1,…, N}i*

MPCitH transform

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

③ Chose a random party
i* ←$ {1,…, N}i*

④ Open parties {1,…, N}∖{i*}
([[x]]i, ρi)i≠i*

i*

MPCitH transform

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

③ Chose a random party
i* ←$ {1,…, N}i*

④ Open parties {1,…, N}∖{i*}
([[x]]i, ρi)i≠i*

i* ⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ≠ i*
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

MPCitH transform

• Zero-knowledge MPC protocol is -private

• Soundness

‣ if → Verifier rejects

‣ if , then

- either = sharing of correct witness

 → Prover honest

- or Prover has cheated for at least one party

 → Cheat undetected with proba

⟺ (N − 1)

g(y, α) ≠ Accept

g(y, α) = Accept

[[x]] F(x) = y

1
N

MPCitH transform

• Zero-knowledge MPC protocol is -private

• Soundness

‣ if → Verifier rejects

‣ if , then

- either = sharing of correct witness

 → Prover honest

- or Prover has cheated for at least one party

 → Cheat undetected with proba

⟺ (N − 1)

g(y, α) ≠ Accept

g(y, α) = Accept

[[x]] F(x) = y

1
N

MPCitH transform

• Zero-knowledge MPC protocol is -private

• Soundness

‣ if → Verifier rejects

‣ if , then

- either = sharing of correct witness

 → Prover honest

- or Prover has cheated for at least one party

 → Cheat undetected with proba

⟺ (N − 1)

g(y, α) ≠ Accept

g(y, α) = Accept

[[x]] F(x) = y

1
N

MPCitH transform

• Zero-knowledge MPC protocol is -private

• Soundness

‣ if → Verifier rejects

‣ if , then

- either = sharing of correct witness

 → Prover honest

- or Prover has cheated for at least one party

 → Cheat undetected with proba

⟺ (N − 1)

g(y, α) ≠ Accept

g(y, α) = Accept

[[x]] F(x) = y

1
N

MPCitH transform

• Zero-knowledge MPC protocol is -private

• Soundness

‣ if → Verifier rejects

‣ if , then

- either = sharing of correct witness

 → Prover honest

- or Prover has cheated for at least one party

 → Cheat undetected with proba

⟺ (N − 1)

g(y, α) ≠ Accept

g(y, α) = Accept

[[x]] F(x) = y

1
N

1
N

Soundness
error

 [[x]]1
[[α]]1 = H ⋅ [[x]]1

𝒫1 𝒫2 𝒫N

⋯

[[α]]1 [[α]]2 [[α]]N+ + ⋯ + = α

Example: matrix multiplication y = Hx

 [[x]]2
[[α]]2 = H ⋅ [[x]]2

 [[x]]N
[[α]]N = H ⋅ [[x]]N

Prover Verifier{Comρi([[x]]i)}

{[[α]]i}

i*

{[[x]]i, ρi}i≠i*

Check
 - Commitments
 - MPC computation
Check

∀i ≠ i*
Comρi([[x]]i)

[[α]]i = H ⋅ [[x]]i
α := Σi[[α]]i = y

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

i*

[[x]]1
[[x]]2

[[x]]3

[[x]]4

[[x]]5

Complete MPC model

[[x]]1
[[x]]2

[[x]]3

[[x]]4

[[x]]5

Complete MPC model

Randomness
oracle

[[x]]1
[[x]]2

[[x]]3

[[x]]4

[[x]]5

Complete MPC model

Randomness
oracle

ε ← $

ε

[[x]]1
[[x]]2

[[x]]3

[[x]]4

[[x]]5

Complete MPC model

Randomness
oracle

ε ← $

ε

 = radom
challenge sent
by the verifier

ε

[[x]]1
[[x]]2

[[x]]3

[[x]]4

[[x]]5

Complete MPC model

Randomness
oracle

Hint oracle

ε ← $

ε

 = radom
challenge sent
by the verifier

ε

[[x]]1
[[x]]2

[[x]]3

[[x]]4

[[x]]5

Complete MPC model

Randomness
oracle

Hint oracle

ε ← $

ε

 = radom
challenge sent
by the verifier

ε

[[β]]1 [[β]]2

[[β]]3

[[β]]4

[[β]]5

[[x]]1
[[x]]2

[[x]]3

[[x]]4

[[x]]5

Complete MPC model

Randomness
oracle

Hint oracle

ε ← $

ε

 = radom
challenge sent
by the verifier

ε

[[β]]1 [[β]]2

[[β]]3

[[β]]4

[[β]]5

 = sharing
committed by

the prover

[[β]]

False positive probability

• False positive = MPC protocol outputs “Accept” while s.t.

• False positive probability:

 (over the randomness of)

• Soundness error:

[[x]] F(x) ≠ y

p = max
[[β]]

P[𝖬𝖯𝖢 : ([[x]], [[β]], ε) ↦ "Accept" ∣ F(x) ≠ y]

ε

1
N

1
N

+ p

False positive probability

• False positive = MPC protocol outputs “Accept” while s.t.

• False positive probability:

 (over the randomness of)

• Soundness error:

[[x]] F(x) ≠ y

p = max
[[β]]

P[𝖬𝖯𝖢 : ([[x]], [[β]], ε) ↦ "Accept" ∣ F(x) ≠ y]

ε

1
N

1
N

+ p

False positive probability

• False positive = MPC protocol outputs “Accept” while s.t.

• False positive probability:

 (over the randomness of)

• Soundness error:

[[x]] F(x) ≠ y

p = max
[[β]]

P[𝖬𝖯𝖢 : ([[x]], [[β]], ε) ↦ "Accept" ∣ F(x) ≠ y]

ε

1
N

1
N

+ p

Example: [BN20] check product xy = z

[[x]]1, [[y]]1, [[z]]1
𝒫1 𝒫N

⋯

[[x]]N, [[y]]N, [[z]]N

Example: [BN20] check product xy = z

[[x]]1, [[y]]1, [[z]]1
[[a]]1, [[b]]1, [[c]]1

𝒫1 𝒫N

⋯

[[x]]N, [[y]]N, [[z]]N
[[a]]N, [[b]]N, [[c]]N ← hint ab = c

Example: [BN20] check product xy = z

[[x]]1, [[y]]1, [[z]]1
[[a]]1, [[b]]1, [[c]]1

ε

𝒫1 𝒫N

⋯

[[x]]N, [[y]]N, [[z]]N
[[a]]N, [[b]]N, [[c]]N

ε
← hint ab = c
← random ε

Example: [BN20] check product xy = z

[[x]]1, [[y]]1, [[z]]1
[[a]]1, [[b]]1, [[c]]1

ε
[[α]]1 = ε[[x]]1 + [[a]]1
[[β]]1 = [[y]]1 + [[b]]1

𝒫1 𝒫N

⋯

[[α]]1 [[β]]1

[[x]]N, [[y]]N, [[z]]N
[[a]]N, [[b]]N, [[c]]N

ε
[[α]]N = ε[[x]]N + [[a]]N
[[β]]N = [[y]]N + [[b]]N

[[α]]N [[β]]N

← hint ab = c
← random ε

α = ϵx + a
β = y + b

Example: [BN20] check product xy = z

[[x]]1, [[y]]1, [[z]]1
[[a]]1, [[b]]1, [[c]]1

ε
[[α]]1 = ε[[x]]1 + [[a]]1
[[β]]1 = [[y]]1 + [[b]]1

𝒫1 𝒫N

⋯

[[α]]1 [[β]]1

[[x]]N, [[y]]N, [[z]]N
[[a]]N, [[b]]N, [[c]]N

ε
[[α]]N = ε[[x]]N + [[a]]N
[[β]]N = [[y]]N + [[b]]N

[[α]]N [[β]]N

 [[v]]1 = ϵ[[z]]1 − [[c]]1 + α[[b]]1
+β[[a]]1 − αβ

 [[v]]N = ϵ[[z]]N − [[c]]N + α[[b]]N
+β[[a]]N − αβ

← hint ab = c
← random ε

[[v]]1 [[v]]N

α = ϵx + a
β = y + b

v

Example: [BN20] check product xy = z

[[x]]1, [[y]]1, [[z]]1
[[a]]1, [[b]]1, [[c]]1

ε
[[α]]1 = ε[[x]]1 + [[a]]1
[[β]]1 = [[y]]1 + [[b]]1

𝒫1 𝒫N

⋯

[[α]]1 [[β]]1

[[x]]N, [[y]]N, [[z]]N
[[a]]N, [[b]]N, [[c]]N

ε
[[α]]N = ε[[x]]N + [[a]]N
[[β]]N = [[y]]N + [[b]]N

[[α]]N [[β]]N

 [[v]]1 = ϵ[[z]]1 − [[c]]1 + α[[b]]1
+β[[a]]1 − αβ

 [[v]]N = ϵ[[z]]N − [[c]]N + α[[b]]N
+β[[a]]N − αβ

← hint ab = c
← random ε

[[v]]1 [[v]]N

α = ϵx + a
β = y + b

 g(v) = {Accept if v = 0
Reject if v ≠ 0

v

Example: [BN20] check product xy = z

[[x]]1, [[y]]1, [[z]]1
[[a]]1, [[b]]1, [[c]]1

ε
[[α]]1 = ε[[x]]1 + [[a]]1
[[β]]1 = [[y]]1 + [[b]]1

𝒫1 𝒫N

⋯

[[α]]1 [[β]]1

[[x]]N, [[y]]N, [[z]]N
[[a]]N, [[b]]N, [[c]]N

ε
[[α]]N = ε[[x]]N + [[a]]N
[[β]]N = [[y]]N + [[b]]N

[[α]]N [[β]]N

 [[v]]1 = ϵ[[z]]1 − [[c]]1 + α[[b]]1
+β[[a]]1 − αβ

 [[v]]N = ϵ[[z]]N − [[c]]N + α[[b]]N
+β[[a]]N − αβ

← hint ab = c
← random ε

[[v]]1 [[v]]N

α = ϵx + a
β = y + b

 g(v) = {Accept if v = 0
Reject if v ≠ 0

v

If and , then
If or , then

xy = z ab = c v = 0
xy ≠ z ab ≠ c Pr[v = 0] = 1/ |𝔽 |

Example: [BN20] check product xy = z

[[x]]1, [[y]]1, [[z]]1
[[a]]1, [[b]]1, [[c]]1

ε
[[α]]1 = ε[[x]]1 + [[a]]1
[[β]]1 = [[y]]1 + [[b]]1

𝒫1 𝒫N

⋯

[[α]]1 [[β]]1

[[x]]N, [[y]]N, [[z]]N
[[a]]N, [[b]]N, [[c]]N

ε
[[α]]N = ε[[x]]N + [[a]]N
[[β]]N = [[y]]N + [[b]]N

[[α]]N [[β]]N

 [[v]]1 = ϵ[[z]]1 − [[c]]1 + α[[b]]1
+β[[a]]1 − αβ

 [[v]]N = ϵ[[z]]N − [[c]]N + α[[b]]N
+β[[a]]N − αβ

← hint ab = c
← random ε

[[v]]1 [[v]]N

α = ϵx + a
β = y + b

 g(v) = {Accept if v = 0
Reject if v ≠ 0

If and , then
If or , then

xy = z ab = c v = 0
xy ≠ z ab ≠ c Pr[v = 0] = 1/ |𝔽 |

false positive
probability

Verifying arbitrary circuits

• Product-check protocol protocol for checking any arithmetic circuit

• Principle:

‣ Let all the multiplications in

‣ Extended witness:

‣ Compute = linear function of → check = sharing of

‣ = linear functions of → product check on

⇒ C(x) = y

{ci = ai ⋅ bi} C

w = x ∥ (c1, …, cm)

[[y]] [[w]] [[y]] y

[[ai]], [[bi]], [[ci]] [[w]] [[ai]], [[bi]], [[ci]]

Optimisations

Optimising communication (sig. size)

• Signature = transcript P → V (iterations)

‣ → commitments

‣ → MPC broadcasts

‣ → input shares + random tapes

• First optimisation: hashing

‣ → ,

‣ Verification

-

-

- Check

×τ

{Comρi([[x]]i)} N

[[α]]1, …, [[α]]N N

{[[x]]i, ρi}i≠i* N − 1

[[α]]1, …, [[α]]N h = Hash([[α]]1, …, [[α]]N) α = Σi[[α]]i

[[α]]i = φ([[x]]i) ∀i ≠ i*

[[α]]i* = α − Σi≠i*[[α]]i

Hash([[α]]1, …, [[α]]N) = h

Optimising communication (sig. size)

• Signature = transcript P → V (iterations)

‣ → commitments

‣ → MPC broadcasts

‣ → input shares + random tapes

• First optimisation: hashing

‣ → ,

‣ Verification

-

-

- Check

×τ

{Comρi([[x]]i)} N

[[α]]1, …, [[α]]N N

{[[x]]i, ρi}i≠i* N − 1

[[α]]1, …, [[α]]N h = Hash([[α]]1, …, [[α]]N) α = Σi[[α]]i

[[α]]i = φ([[x]]i) ∀i ≠ i*

[[α]]i* = α − Σi≠i*[[α]]i

Hash([[α]]1, …, [[α]]N) = h

Optimising communication (sig. size)

• Signature = transcript P → V (iterations)

‣ → commitments

‣ → MPC broadcasts → hash (+1 MPC broadcast)

‣ → input shares + random tapes

• First optimisation: hashing

‣ → ,

‣ Verification

-

-

- Check

×τ

{Comρi([[x]]i)} N

[[α]]1, …, [[α]]N N

{[[x]]i, ρi}i≠i* N − 1

[[α]]1, …, [[α]]N h = Hash([[α]]1, …, [[α]]N) α = Σi[[α]]i

[[α]]i = φ([[x]]i) ∀i ≠ i*

[[α]]i* = α − Σi≠i*[[α]]i

Hash([[α]]1, …, [[α]]N) = h

Optimising communication (sig. size)

• Signature = transcript P → V (iterations)

‣ → commitments → hash +1 commitment

‣ → MPC broadcasts → hash (+1 MPC broadcast)

‣ → input shares + random tapes

• First optimisation: hashing

‣ → ,

‣ Verification

-

-

- Check

×τ

{Comρi([[x]]i)} N

[[α]]1, …, [[α]]N N

{[[x]]i, ρi}i≠i* N − 1

[[α]]1, …, [[α]]N h = Hash([[α]]1, …, [[α]]N) α = Σi[[α]]i

[[α]]i = φ([[x]]i) ∀i ≠ i*

[[α]]i* = α − Σi≠i*[[α]]i

Hash([[α]]1, …, [[α]]N) = h

Optimising communication (sig. size)

• Signature = transcript P → V (iterations)

‣ → commitments → hash +1 commitment

‣ → MPC broadcasts → hash (+1 MPC broadcast)

‣ → input shares + random tapes

• First optimisation: hashing

‣ → ,

‣ Verification

-

-

- Check

×τ

{Comρi([[x]]i)} N

[[α]]1, …, [[α]]N N

{[[x]]i, ρi}i≠i* N − 1

[[α]]1, …, [[α]]N h = Hash([[α]]1, …, [[α]]N) α = Σi[[α]]i

[[α]]i = φ([[x]]i) ∀i ≠ i*

[[α]]i* = α − Σi≠i*[[α]]i

Hash([[α]]1, …, [[α]]N) = h

main cost

Second optimisation: seed trees

• [KKW18] Katz, Kolesnikov, Wang: “Improved Non-Interactive Zero
Knowledge with Applications to Post-Quantum Signatures” (CCS 2018)

• Pseudorandom generation from seed

‣

‣

• Seeds generated from a common “root seed”

• Goal: revealing with less than bits

([[x]]i, ρi) ← PRG(𝗌𝖾𝖾𝖽i)

[[x]]N = x − ΣN
i=1[[x]]i

{𝗌𝖾𝖾𝖽i}

{𝗌𝖾𝖾𝖽i}i≠i* (N − 1) ⋅ λ

Second optimisation: seed trees

• [KKW18] Katz, Kolesnikov, Wang: “Improved Non-Interactive Zero
Knowledge with Applications to Post-Quantum Signatures” (CCS 2018)

• Pseudorandom generation from seed

‣

‣

• Seeds generated from a common “root seed”

• Goal: revealing with less than bits

([[x]]i, ρi) ← PRG(𝗌𝖾𝖾𝖽i)

[[x]]N = x − ΣN
i=1[[x]]i

{𝗌𝖾𝖾𝖽i}

{𝗌𝖾𝖾𝖽i}i≠i* (N − 1) ⋅ λ

Second optimisation: seed trees

• [KKW18] Katz, Kolesnikov, Wang: “Improved Non-Interactive Zero
Knowledge with Applications to Post-Quantum Signatures” (CCS 2018)

• Pseudorandom generation from seed

‣

‣

• Seeds generated from a common “root seed”

• Goal: revealing with less than bits

([[x]]i, ρi) ← PRG(𝗌𝖾𝖾𝖽i)

[[x]]N = x − ΣN
i=1[[x]]i

{𝗌𝖾𝖾𝖽i}

{𝗌𝖾𝖾𝖽i}i≠i* (N − 1) ⋅ λ

Second optimisation: seed trees

• [KKW18] Katz, Kolesnikov, Wang: “Improved Non-Interactive Zero
Knowledge with Applications to Post-Quantum Signatures” (CCS 2018)

• Pseudorandom generation from seed

‣

‣

• Seeds generated from a common “root seed”

• Goal: revealing with less than bits

([[x]]i, ρi) ← PRG(𝗌𝖾𝖾𝖽i)

[[x]]N = x − ΣN
i=1[[x]]i

{𝗌𝖾𝖾𝖽i}

{𝗌𝖾𝖾𝖽i}i≠i* (N − 1) ⋅ λ

Second optimisation: seed trees

𝗌𝖾𝖾𝖽1 𝗌𝖾𝖾𝖽2 𝗌𝖾𝖾𝖽N…

𝗋𝗈𝗈𝗍_𝗌𝖾𝖾𝖽
(𝗌𝖾𝖾𝖽𝟣, 𝗌𝖾𝖾𝖽𝟤) ← PRG(𝗉𝖺𝗋𝖾𝗇𝗍_𝗌𝖾𝖾𝖽)

Second optimisation: seed trees

i*

Second optimisation: seed trees

i*

Second optimisation: seed trees

i* to be revealed

Second optimisation: seed trees

i* to be revealed

sibling path

Second optimisation: seed trees

i* to be revealed

sibling path
→ seedslog(N)

• Signature = transcript P → V

‣ → commitments → hash +1 commitment

‣ → MPC broadcasts → hash (+1 MPC broadcast)

‣ → input shares + random tapes → seeds

• Verification

- Sibling path →

- →

- …

{Comρi([[x]]i)} N

[[α]]1, …, [[α]]N N

{[[x]]i, ρi}i≠i* N − 1 log(N)

{𝗌𝖾𝖾𝖽i}i≠i*

𝗌𝖾𝖾𝖽i ([[x]]i, ρi) ∀ i ≠ i*

Second optimisation: seed trees

+ if [[x]]N i* ≠ N

• Signature = transcript P → V

‣ → commitments → hash +1 commitment

‣ → MPC broadcasts → hash (+1 MPC broadcast)

‣ → input shares + random tapes → seeds

• Verification

- Sibling path →

- →

- …

{Comρi([[x]]i)} N

[[α]]1, …, [[α]]N N

{[[x]]i, ρi}i≠i* N − 1 log(N)

{𝗌𝖾𝖾𝖽i}i≠i*

𝗌𝖾𝖾𝖽i ([[x]]i, ρi) ∀ i ≠ i*

Second optimisation: seed trees

+ if [[x]]N i* ≠ N

Optimising computation: hypercube technique

• [AGHHJY23] Aguilar Melchor, Gama, Howe, Hülsing, Joseph, Yue. "The
Return of the SDitH" (EUROCRYPT 2023)

• High-level principle

‣ Apply MPC computation to sums of shares

‣ Only such party computations necessary for the prover

‣ Only for the verifier

• See Nicolas Gama’s talk at EC: https://youtu.be/z6nE4fOWvZA (49:33)

Σi∈I [[xi]]
φ Σi∈I [[αi]]

log N + 1

log N

https://youtu.be/z6nE4fOWvZA

Optimising computation: hypercube technique

• [AGHHJY23] Aguilar Melchor, Gama, Howe, Hülsing, Joseph, Yue. "The
Return of the SDitH" (EUROCRYPT 2023)

• High-level principle

‣ Apply MPC computation to sums of shares

‣ Only such party computations necessary for the prover

‣ Only for the verifier

• See Nicolas Gama’s talk at EC: https://youtu.be/z6nE4fOWvZA (49:33)

Σi∈I [[xi]]
φ Σi∈I [[αi]]

log N + 1

log N

https://youtu.be/z6nE4fOWvZA

Optimising computation: hypercube technique

• [AGHHJY23] Aguilar Melchor, Gama, Howe, Hülsing, Joseph, Yue. "The
Return of the SDitH" (EUROCRYPT 2023)

• High-level principle

‣ Apply MPC computation to sums of shares

‣ Only such party computations necessary for the prover

‣ Only for the verifier

• See Nicolas Gama’s talk at EC: https://youtu.be/z6nE4fOWvZA (49:33)

Σi∈I [[xi]]
φ Σi∈I [[αi]]

log N + 1

log N

https://youtu.be/z6nE4fOWvZA

SDitH Signature Scheme:
MPCitH with SD

Syndrome decoding problem
• Parameters

• A field , (code length) , (code dimension) , (weight)

• Let

• (random parity-check matrix)

• s.t. (SD solution)

• (syndrome)

• From find

• Standard form (wlog): where

𝔽q m ∈ ℕ k < m w < m

H ← 𝔽 (m−k)×m
q

x ← 𝔽m
q wt(x) ≤ w

y = H x

(H, y) x

H = (H′ | Im−k) ⇒ y = H′ xA + xB x = (xA |xB)

Syndrome decoding problem
• Parameters

• A field , (code length) , (code dimension) , (weight)

• Let

• (random parity-check matrix)

• s.t. (SD solution)

• (syndrome)

• From find

• Standard form (wlog): where

𝔽q m ∈ ℕ k < m w < m

H ← 𝔽 (m−k)×m
q

x ← 𝔽m
q wt(x) ≤ w

y = H x

(H, y) x

H = (H′ | Im−k) ⇒ y = H′ xA + xB x = (xA |xB)

|xA | = k |xB | = m − k

 ⇒ xB = y − H′ xA

Polynomial expression

x S(X)
interpolation

S(f1)

S(fm)

⋮=

Polynomial expression

x S(X)
interpolation

S(f1)

S(fm)

⋮

Q(X) = ∏
i∈E

(X − fi)

=

Polynomial expression

x S(X)
interpolation

S(f1)

S(fm)

⋮

Q(X) = ∏
i∈E

(X − fi)

=

indices s.t. i xi ≠ 0
|E | ≤ w ⇒ deg(Q) ≤ w

Polynomial expression

x S(X)
interpolation

S(f1)

S(fm)

⋮

Q(X) = ∏
i∈E

(X − fi)
Q(f1)

Q(fm)

⋮=

indices s.t. i xi ≠ 0
|E | ≤ w ⇒ deg(Q) ≤ w

= zero coordinate
= non-zero coordinate

Polynomial expression

x S(X)
interpolation

S(f1)

S(fm)

⋮

Q(X) = ∏
i∈E

(X − fi)
Q(f1)

Q(fm)

⋮=

indices s.t. i xi ≠ 0
|E | ≤ w ⇒ deg(Q) ≤ w

= zero coordinate
= non-zero coordinate

 evaluates to 0 in ⇒ S(X) ⋅ Q(X) f1, …, fm ⇒ S(X) ⋅ Q(X) = F(X) ⋅ P(X)

∏
i∈[1:m]

(X − fi)

some degree
polynomial

⩽ w − 1

Polynomial expression

x S(X)
interpolation

S(f1)

S(fm)

⋮

Q(X) = ∏
i∈E

(X − fi)
Q(f1)

Q(fm)

⋮=
If then

 of degree s.t.
evaluates to 0 in

 of degrees , s.t

wt(x) ≤ w
∃ Q ≤ w S(X) ⋅ Q(X)

f1, …, fm
⇔

∃ Q, P ≤ w w − 1
S(X) ⋅ Q(X) = F(X) ⋅ P(X)

 evaluates to 0 in ⇒ S(X) ⋅ Q(X) f1, …, fm

Polynomial expression

x S(X)
interpolation

S(f1)

S(fm)

⋮

Q(X) = ∏
i∈E

(X − fi)
Q(f1)

Q(fm)

⋮=
If then

 of degree s.t.
evaluates to 0 in

 of degrees , s.t

wt(x) ≤ w
∃ Q ≤ w S(X) ⋅ Q(X)

f1, …, fm
⇔

∃ Q, P ≤ w w − 1
S(X) ⋅ Q(X) = F(X) ⋅ P(X)

 evaluates to 0 in ⇒ S(X) ⋅ Q(X) f1, …, fm

We’ll show this

SDitH MPC protocol

• Parties receive

• sharings of

• SD instance

• Parties jointly compute

where and

[[xA]], [[P]], [[Q]] xA, P, Q

(H′ , y)

g(xA, P, Q) = {Accept if SQ = FP
Reject otherwise

xB = y − H′ xA S = Interp(xA |xB)

[[xA, P, Q]]1 [[xA, P, Q]]2

[[xA, P, Q]]3

[[xA, P, Q]]4

[[xA, P, Q]]5

SDitH MPC protocol

• Parties receive

• sharings of

• SD instance

• Parties jointly compute

where and

[[xA]], [[P]], [[Q]] xA, P, Q

(H′ , y)

g(xA, P, Q) = {Accept if SQ = FP
Reject otherwise

xB = y − H′ xA S = Interp(xA |xB)

[[xA, P, Q]]1 [[xA, P, Q]]2

[[xA, P, Q]]3

[[xA, P, Q]]4

[[xA, P, Q]]5

Schwartz–Zippel lemma

• Let and two degree- polynomials of

• Let a random point of ,

(roots of)

• For a random ,

P1 P2 d 𝔽 [X]

r 𝔽

Pr [P1(r) = P2(r) ∣ P1 ≠ P2] ≤
d

|𝔽 |

P1(r) = P2(r) ⇔ r ∈ P1 − P2

r ∈ 𝔽 η
q

Pr [S(r) ⋅ Q(r) = F(r) ⋅ P(r) ∣ SQ ≠ FP] ≤
m + w − 1

qη

Schwartz–Zippel lemma

• Let and two degree- polynomials of

• Let a random point of ,

(roots of)

• For a random ,

P1 P2 d 𝔽 [X]

r 𝔽

Pr [P1(r) = P2(r) ∣ P1 ≠ P2] ≤
d

|𝔽 |

P1(r) = P2(r) ⇔ r ∈ P1 − P2

r ∈ 𝔽 η
q

Pr [S(r) ⋅ Q(r) = F(r) ⋅ P(r) ∣ SQ ≠ FP] ≤
m + w − 1

qη

SDitH MPC protocol

• Principle: check on random points (SZ lemma)

1. Locally compute

2. Locally compute by Lagrange interpolation of

3. Randomness oracle

4. Locally compute

5. Check the product from the shares

• using [BN20] product-check protocol

• False positive probability:

SQ = FP t

[[xB]] = y − H′ [[xA]]

[[S]] [[x]] = ([[xA]] | [[xB]])

→ r1, …, rt ∈ 𝔽 η
q

[[S(ri)]], [[Q(ri)]], F(ri) ⋅ [[P(ri)]] ∀i ∈ [1 : t]

S(ri) ⋅ Q(ri) = F(ri) ⋅ P(ri)

p =
t

∑
i=0

(t
i) (m + w − 1

qη)
i

(1 −
m + w − 1

qη)
t−i

(1
qη)

t−i

SDitH MPC protocol

• Principle: check on random points (SZ lemma)

1. Locally compute

2. Locally compute by Lagrange interpolation of

3. Randomness oracle ,

4. Locally compute

5. Check the product from the shares

• using [BN20] product-check protocol

• False positive probability:

SQ = FP t

[[xB]] = y − H′ [[xA]]

[[S]] [[x]] = ([[xA]] | [[xB]])

→ r1, …, rt ∈ 𝔽 η
q ε1, …, εt ∈ 𝔽 η

q

[[S(ri)]], [[Q(ri)]], F(ri) ⋅ [[P(ri)]] ∀i ∈ [1 : t]

S(ri) ⋅ Q(ri) = F(ri) ⋅ P(ri)

p =
t

∑
i=0

(t
i) (m + w − 1

qη)
i

(1 −
m + w − 1

qη)
t−i

(1
qη)

t−i

SDitH MPC protocol

• Principle: check on random points (SZ lemma)

1. Locally compute

2. Locally compute by Lagrange interpolation of

3. Randomness oracle ,

4. Locally compute

5. Check the product from the shares

• using [BN20] product-check protocol

• False positive probability:

SQ = FP t

[[xB]] = y − H′ [[xA]]

[[S]] [[x]] = ([[xA]] | [[xB]])

→ r1, …, rt ∈ 𝔽 η
q ε1, …, εt ∈ 𝔽 η

q

[[S(ri)]], [[Q(ri)]], F(ri) ⋅ [[P(ri)]] ∀i ∈ [1 : t]

S(ri) ⋅ Q(ri) = F(ri) ⋅ P(ri)

p =
t

∑
i=0

(t
i) (m + w − 1

qη)
i

(1 −
m + w − 1

qη)
t−i

(1
qη)

t−i

SDitH signature scheme

SDitH signature scheme

 × τ

 × τ
 × τ

 × τ
 × τ

SDitH signature scheme

 × τ

 × τ
 × τ

 × τ

hypercube
 party

emulations

→
log N + 1

 × τ

SDitH signature scheme

SDitH signature scheme

128-bit security

SDitH signature scheme

128-bit security

 variant based in MPCitH

with threshold secret sharing
∃☝

MPC in the Head with
Threshold Secret Sharing

(a.k.a. TCitH)

• Generate

‣ Let

‣ Let the polynomial of coefficients

 with distinct field elements

• Reconstruct

‣ Interpolate from

‣

(r1, …, rℓ) ← $

P (x, r1, …, rℓ)
[[x]]1 = P(f1)

⋮
[[x]]N = P(fN)

f1, …, fN ∈ 𝔽

P [[x]]1, …, [[x]]N

x = P(0)

Background: Shamir’s secret sharing

[[x]] = ([[x]]1, …, [[x]]N)

• Generate

‣ Let

‣ Let the polynomial of coefficients

 with distinct field elements

• Reconstruct

‣ Interpolate from

‣

(r1, …, rℓ) ← $

P (x, r1, …, rℓ)
[[x]]1 = P(f1)

⋮
[[x]]N = P(fN)

f1, …, fN ∈ 𝔽

P [[x]]1, …, [[x]]N

x = P(0)

Background: Shamir’s secret sharing

[[x]] = ([[x]]1, …, [[x]]N)

• -threshold linear secret sharing scheme (LSSS)

‣ Linearity:

‣ Any set of shares is random and independent of

‣ Any set of shares → coefficients → all the
shares

• is a Reed-Solomon codeword of

(ℓ + 1, N)

[[x]] + [[y]] = [[x + y]]

ℓ x

ℓ + 1 (x, r1, …, rℓ)

[[x]] = ([[x]]1, …, [[x]]N) (x, r1, …, rℓ)

Background: Shamir’s secret sharing

• -threshold linear secret sharing scheme (LSSS)

‣ Linearity:

‣ Any set of shares is random and independent of

‣ Any set of shares → coefficients → all the
shares

• is a Reed-Solomon codeword of

(ℓ + 1, N)

[[x]] + [[y]] = [[x + y]]

ℓ x

ℓ + 1 (x, r1, …, rℓ)

[[x]] = ([[x]]1, …, [[x]]N) (x, r1, …, rℓ)

Background: Shamir’s secret sharing

• -threshold linear secret sharing scheme (LSSS)

‣ Linearity:

‣ Any set of shares is random and independent of

‣ Any set of shares → coefficients → all the
shares

• is a Reed-Solomon codeword of

(ℓ + 1, N)

[[x]] + [[y]] = [[x + y]]

ℓ x

ℓ + 1 (x, r1, …, rℓ)

[[x]] = ([[x]]1, …, [[x]]N) (x, r1, …, rℓ)

Background: Shamir’s secret sharing

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

E.g. ℓ = 2

• [FR23] Feneuil, Rivain. "Threshold Linear Secret Sharing to
the Rescue of MPC-in-the-Head" (Asiacrypt 2023)

• ZK property only open parties

• Verifier challenges a set s.t.

• Prover opens

⇒ ℓ

I ⊆ {1,…, N} | I | = ℓ

{[[x]]i, ρi}i∈I

MPCitH with threshold LSSS (a.k.a TCitH)

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

③ Chose random set of parties
 I ⊆ {1,…, N}, s.t. | I | = ℓI

④ Open parties in I
([[x]]i, ρi)i∈I

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ∈ I
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

[[x]]1 [[x]]2

[[x]]3

[[x]]4

MPCitH with threshold LSSS (a.k.a TCitH)

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

③ Chose random set of parties
 I ⊆ {1,…, N}, s.t. | I | = ℓI

④ Open parties in I
([[x]]i, ρi)i∈I

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ∈ I
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

[[x]]1 [[x]]2

[[x]]3

[[x]]4

Threshold LSSS cannot
generate shares from seeds

⇒

MPCitH with threshold LSSS (a.k.a TCitH)

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

③ Chose random set of parties
 I ⊆ {1,…, N}, s.t. | I | = ℓI

④ Open parties in I
([[x]]i, ρi)i∈I

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ∈ I
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

[[x]]1 [[x]]2

[[x]]3

[[x]]4

Threshold LSSS cannot
generate shares from seeds

⇒

 is an RS codeword
 shares fully

determine the sharing

[[α]]
⇒ ℓ + 1

MPCitH with threshold LSSS (a.k.a TCitH)

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

③ Chose random set of parties
 I ⊆ {1,…, N}, s.t. | I | = ℓI

④ Open parties in I
([[x]]i, ρi)i∈I

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ∈ I
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

[[x]]1 [[x]]2

[[x]]3

[[x]]4

Threshold LSSS cannot
generate shares from seeds

⇒

 is an RS codeword
 shares fully

determine the sharing

[[α]]
⇒ ℓ + 1

 only party
computations required

⇒ ℓ + 1

MPCitH with threshold LSSS (a.k.a TCitH)

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

③ Chose random set of parties
 I ⊆ {1,…, N}, s.t. | I | = ℓI

④ Open parties in I
([[x]]i, ρi)i∈I

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ∈ I
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

[[x]]1 [[x]]2

[[x]]3

[[x]]4

Threshold LSSS cannot
generate shares from seeds

⇒

 is an RS codeword
 shares fully

determine the sharing

[[α]]
⇒ ℓ + 1

 parties opened
instead of
ℓ

N − 1
 only party

computations required
⇒ ℓ + 1

MPCitH with threshold LSSS (a.k.a TCitH)

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

③ Chose random set of parties
 I ⊆ {1,…, N}, s.t. | I | = ℓI

④ Open parties in I
([[x]]i, ρi)i∈I

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ∈ I
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

[[x]]1 [[x]]2

[[x]]3

[[x]]4

Threshold LSSS cannot
generate shares from seeds

⇒

 is an RS codeword
 shares fully

determine the sharing

[[α]]
⇒ ℓ + 1

 parties opened
instead of
ℓ

N − 1
 only party

computations required
⇒ ℓ + 1 only party

computations required
ℓ

MPCitH with threshold LSSS (a.k.a TCitH)

Sharing and commitments

Merkle tree

Sharing and commitments

Merkle tree
𝖼𝗁𝗂𝗅𝖽_𝗇𝗈𝖽𝖾 ← Hash(𝗇𝗈𝖽𝖾𝟣, 𝗇𝗈𝖽𝖾𝟤)

Sharing and commitments

Merkle tree
𝖼𝗁𝗂𝗅𝖽_𝗇𝗈𝖽𝖾 ← Hash(𝗇𝗈𝖽𝖾𝟣, 𝗇𝗈𝖽𝖾𝟤)

[[x]]1 [[x]]N

(r1, …, rℓ) ← $
P(⋅) = x + Σℓ

i=1ri(⋅)i

⋯

P(f1)
P(fN)

[[x]]2

Sharing and commitments

Merkle tree
𝖼𝗁𝗂𝗅𝖽_𝗇𝗈𝖽𝖾 ← Hash(𝗇𝗈𝖽𝖾𝟣, 𝗇𝗈𝖽𝖾𝟤)

[[x]]1 [[x]]N

(r1, …, rℓ) ← $
P(⋅) = x + Σℓ

i=1ri(⋅)i

⋯

P(f1)
P(fN)

[[x]]2

Root = global
commitment

Sharing and commitments

Merkle tree

[[x]]1 [[x]]N⋯[[x]]2 [[x]]i

Opening
 need to prove that

is consistent with the root

[[x]]i
⇒ [[x]]i

Sharing and commitments

Merkle tree

[[x]]1 [[x]]N⋯[[x]]2 [[x]]i

Opening
 need to prove that

is consistent with the root

[[x]]i
⇒ [[x]]i

authentication path
→ hasheslog(N)

Sharing and commitments

Merkle tree

[[x]]1 [[x]]N⋯[[x]]2 [[x]]i

Opening
 need to prove that

is consistent with the root

[[x]]i
⇒ [[x]]i

authentication path
→ hasheslog(N)

verification
→ hashinglog(N) + 1

Sharing and commitments

Merkle tree

[[x]]1 [[x]]N⋯[[x]]2 [[x]]i

Opening
 need to prove that

is consistent with the root

[[x]]i
⇒ [[x]]i

authentication path
→ hasheslog(N)

verification
→ hashinglog(N) + 1

Sharing and commitments

Merkle tree

[[x]]1 [[x]]N⋯[[x]]2 [[x]]i

Opening
 need to prove that

is consistent with the root

[[x]]i
⇒ [[x]]i

authentication path
→ hasheslog(N)

verification
→ hashinglog(N) + 1

Sharing and commitments

Merkle tree

[[x]]1 [[x]]N⋯[[x]]2 [[x]]i

Opening
 need to prove that

is consistent with the root

[[x]]i
⇒ [[x]]i

authentication path
→ hasheslog(N)

verification
→ hashinglog(N) + 1

Sharing and commitments

Merkle tree

[[x]]1 [[x]]N⋯[[x]]2 [[x]]i

Opening
 need to prove that

is consistent with the root

[[x]]i
⇒ [[x]]i

authentication path
→ hasheslog(N)

verification
→ hashinglog(N) + 1

MPCitH with threshold LSSS (a.k.a TCitH)

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Merkle root
② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

③ Chose random set of parties
 I ⊆ {1,…, N}, s.t. | I | = ℓI

④ Open parties in I
{[[x]]i, authi}i∈I

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ∈ I
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

[[x]]1 [[x]]2

[[x]]3

[[x]]4

authentication path

Soundness

• One would expect:

 Soundness error

• But the verifier also check broadcast sharings

- must be valid Shamir’s secret sharings

- i.e. valid Reed-Solomon codewords

 limits the cheating possibilities

• We actually have: Soundness error

P[cheat detected] =
ℓ
N

⇒ = 1 −
ℓ
N

[[α]]

⇒

=
1

(N
ℓ)

1

(N
ℓ)

+ p ⋅
ℓ(N − ℓ)

ℓ + 1

Soundness

• One would expect:

 Soundness error

• But the verifier also check broadcast sharings

- must be valid Shamir’s secret sharings

- i.e. valid Reed-Solomon codewords

 limits the cheating possibilities

• We actually have: Soundness error

P[cheat detected] =
ℓ
N

⇒ = 1 −
ℓ
N

[[α]]

⇒

=
1

(N
ℓ)

1

(N
ℓ)

+ p ⋅
ℓ(N − ℓ)

ℓ + 1

not really good🤔

Soundness

• One would expect:

 Soundness error

• But the verifier also check broadcast sharings

- must be valid Shamir’s secret sharings

- i.e. valid Reed-Solomon codewords

 limits the cheating possibilities

• We actually have: Soundness error

P[cheat detected] =
ℓ
N

⇒ = 1 −
ℓ
N

[[α]]

⇒

=
1

(N
ℓ)

1

(N
ℓ)

+ p ⋅
ℓ(N − ℓ)

ℓ + 1

not really good🤔

Soundness

• One would expect:

 Soundness error

• But the verifier also check broadcast sharings

- must be valid Shamir’s secret sharings

- i.e. valid Reed-Solomon codewords

 limits the cheating possibilities

• We actually have: Soundness error

P[cheat detected] =
ℓ
N

⇒ = 1 −
ℓ
N

[[α]]

⇒

=
1

(N
ℓ)

1

(N
ℓ)

+ p ⋅
ℓ(N − ℓ)

ℓ + 1

🤩

Soundness

• One would expect:

 Soundness error

• But the verifier also check broadcast sharings

- must be valid Shamir’s secret sharings

- i.e. valid Reed-Solomon codewords

 limits the cheating possibilities

• We actually have: Soundness error

P[cheat detected] =
ℓ
N

⇒ = 1 −
ℓ
N

[[α]]

⇒

=
1

(N
ℓ)

1

(N
ℓ)

+ p ⋅
ℓ(N − ℓ)

ℓ + 1

with false positives

🤩

Soundness

• One would expect:

 Soundness error

• But the verifier also check broadcast sharings

- must be valid Shamir’s secret sharings

- i.e. valid Reed-Solomon codewords

 limits the cheating possibilities

• We actually have: Soundness error

P[cheat detected] =
ℓ
N

⇒ = 1 −
ℓ
N

[[α]]

⇒

=
1

(N
ℓ)

1

(N
ℓ)

+ p ⋅
ℓ(N − ℓ)

ℓ + 1

with false positives

not so great
🤔

🤩

Soundness
1

(N
ℓ)

+ p ⋅
ℓ(N − ℓ)

ℓ + 1

Why?

🤔

Soundness

• Prover can commit invalid sharings

• Let = sharing interpolating

• Many different many possible false positives

[[x]](J) ([[x]]i)i∈J

[[x]](J) ⇒

1

(N
ℓ)

+ p ⋅
ℓ(N − ℓ)

ℓ + 1

💡

Why?

🤔

Soundness

• Prover can commit invalid sharings

• Let = sharing interpolating

• Many different many possible false positives

[[x]](J) ([[x]]i)i∈J

[[x]](J) ⇒

1

(N
ℓ)

+ p ⋅
ℓ(N − ℓ)

ℓ + 1

💡

Why?

🛠

• “Degree-enforcing commitment scheme”

• Verifier Prover : random

• Prover Verifier :

• Before MPC computation

→ {γj}
→ [[ξ]] = Σj γi ⋅ [[xj]]

🤔

Soundness

• Prover can commit invalid sharings

• Let = sharing interpolating

• Many different many possible false positives

[[x]](J) ([[x]]i)i∈J

[[x]](J) ⇒

1

(N
ℓ)

+ p ⋅
ℓ(N − ℓ)

ℓ + 1

💡

Why?

🛠

• “Degree-enforcing commitment scheme”

• Verifier Prover : random

• Prover Verifier :

• Before MPC computation

→ {γj}
→ [[ξ]] = Σj γi ⋅ [[xj]]

⟹
1

(N
ℓ)

+ p

🤔

🤩

MPCitH
+ seed trees

+ hypercube [AGHHJY23]

TCitH

Prover runtime
Party emulations: log N +1
Symmetric crypto: O(N)

Party emulations: 2
Symmetric crypto: O(N)

Verifier runtime
Party emulations: log N
Symmetric crypto: O(N)

Party emulations: 1
Symmetric crypto: O(log N)

Size of tree
128-bit security: ~2KB
256-bit security: ~8KB

128-bit security: ~4KB
256-bit security: ~16KB

Number of parties

ℓ = 1

N ≤ |𝔽 |

🤝

😀

😀

🙁

🙁

 Similar soundness: ℓ = 1 ⇒
1
N

+ p

Comparison

MPCitH
+ seed trees

+ hypercube [AGHHJY23]

TCitH

Prover runtime
Party emulations: log N +1
Symmetric crypto: O(N)

Party emulations: 2
Symmetric crypto: O(N)

Verifier runtime
Party emulations: log N
Symmetric crypto: O(N)

Party emulations: 1
Symmetric crypto: O(log N)

Size of tree
128-bit security: ~2KB
256-bit security: ~8KB

128-bit security: ~4KB
256-bit security: ~16KB

Number of parties

ℓ = 1

N ≤ |𝔽 |

🤝

😀

😀

🙁

🙁

 Similar soundness: ℓ = 1 ⇒
1
N

+ p

Comparison

MPCitH
+ seed trees

+ hypercube [AGHHJY23]

TCitH

Prover runtime
Party emulations: log N +1
Symmetric crypto: O(N)

Party emulations: 2
Symmetric crypto: O(N)

Verifier runtime
Party emulations: log N
Symmetric crypto: O(N)

Party emulations: 1
Symmetric crypto: O(log N)

Size of tree
128-bit security: ~2KB
256-bit security: ~8KB

128-bit security: ~4KB
256-bit security: ~16KB

Number of parties

ℓ = 1

N ≤ |𝔽 |

🤝

😀

😀

🙁

🙁

 Similar soundness: ℓ = 1 ⇒
1
N

+ p

Comparison

MPCitH
+ seed trees

+ hypercube [AGHHJY23]

TCitH

Prover runtime
Party emulations: log N +1
Symmetric crypto: O(N)

Party emulations: 2
Symmetric crypto: O(N)

Verifier runtime
Party emulations: log N
Symmetric crypto: O(N)

Party emulations: 1
Symmetric crypto: O(log N)

Size of tree
128-bit security: ~2KB
256-bit security: ~8KB

128-bit security: ~4KB
256-bit security: ~16KB

Number of parties

ℓ = 1

N ≤ |𝔽 |

🤝

😀

😀

🙁

🙁

 Similar soundness: ℓ = 1 ⇒
1
N

+ p

Comparison

MPCitH
+ seed trees

+ hypercube [AGHHJY23]

TCitH

Prover runtime
Party emulations: log N +1
Symmetric crypto: O(N)

Party emulations: 2
Symmetric crypto: O(N)

Verifier runtime
Party emulations: log N
Symmetric crypto: O(N)

Party emulations: 1
Symmetric crypto: O(log N)

Size of tree
128-bit security: ~2KB
256-bit security: ~8KB

128-bit security: ~4KB
256-bit security: ~16KB

Number of parties N ≤ |𝔽 |

🤝

😀

😀

🙁

🙁

 Similar soundness: ℓ = 1 ⇒
1
N

+ p

Comparison

Getting rid of these limitations

 TCitH with GGM tree→

😀

😀

ℓ = 1

r1 + r2 + ⋯ ⋯ + rN = x

Step 1: Generate a replicated
secret sharing of [ISN89] x

TCitH with GGM trees

+Δx

r1 + r2 + ⋯ ⋯ + rN = x
→ Party 1

→ Party 2

⋮
→ Party N

Step 1: Generate a replicated
secret sharing of [ISN89] x

TCitH with GGM trees

+Δx

r1 + r2 + ⋯ ⋯ + rN = x
→ Party 1

→ Party 2

⋮
→ Party N

Step 1: Generate a replicated
secret sharing of [ISN89] x

Step 2: Convert it into a Shamir’s
secret sharing [CDI05]

Let

 with

P(X) = Δx + ∑j
rjPj(X)

Pj(X) = 1 − (1/ej) ⋅ X

TCitH with GGM trees

+Δx

r1 + r2 + ⋯ ⋯ + rN = x
→ Party 1

→ Party 2

⋮
→ Party N

Step 1: Generate a replicated
secret sharing of [ISN89] x

Step 2: Convert it into a Shamir’s
secret sharing [CDI05]

💡 is a
valid Shamir’s secret sharing of

[[x]] = (P(e1), …, P(eN))
x

Let

 with

P(X) = Δx + ∑j
rjPj(X)

Pj(X) = 1 − (1/ej) ⋅ X

TCitH with GGM trees

+Δx

r1 + r2 + ⋯ ⋯ + rN = x
→ Party 1

→ Party 2

⋮
→ Party N

Step 1: Generate a replicated
secret sharing of [ISN89] x

💡 Party can compute

(since)

i

[[x]]i = ∑
j≠i

rjPj(ei)

Pi(ei) = 0

Step 2: Convert it into a Shamir’s
secret sharing [CDI05]

💡 is a
valid Shamir’s secret sharing of

[[x]] = (P(e1), …, P(eN))
x

Let

 with

P(X) = Δx + ∑j
rjPj(X)

Pj(X) = 1 − (1/ej) ⋅ X

TCitH with GGM trees

+Δx

r1 + r2 + ⋯ ⋯ + rN = x
→ Party 1

→ Party 2

⋮
→ Party N

+Δx

TCitH with GGM trees

Step 1: Generate a replicated
secret sharing of [ISN89] x

💡 Party can compute

(since)

i

[[x]]i = ∑
j≠i

rjPj(ei)

Pi(ei) = 0

Step 2: Convert it into a Shamir’s
secret sharing [CDI05]

💡 is a
valid Shamir’s secret sharing of

[[x]] = (P(e1), …, P(eN))
x

Let

 with

P(X) = Δx + ∑j
rjPj(X)

Pj(X) = 1 − (1/ej) ⋅ X

🛠 Can be adapted
to ℓ > 1

TCitH with GGM trees

🛠 Can be adapted
to ℓ > 1 🌲 Size of GGM tree

TCitH with GGM trees

🛠 Can be adapted
to ℓ > 1 🌲 Size of GGM tree

😇 Good soundness
(only valid sharings)

TCitH with GGM trees

🛠 Can be adapted
to ℓ > 1 🌲 Size of GGM tree

😇 Good soundness
(only valid sharings)

🐌 Loose fast
verification

TCitH with GGM trees

• Shamir’s secret sharing satisfies:

• Simple protocol to verify polynomial constraints

‣ valid

‣ parties locally compute

[[x]](d) ⋅ [[y]](d) = [[x ⋅ y]](2d)

w ⇔ f1(w) = 0, …, fm(w) = 0

[[α]] = [[v]] +
m

∑
j=1

γj ⋅ fj([[w]])

Using multiplication homomorphism

• Shamir’s secret sharing satisfies:

• Simple protocol to verify polynomial constraints

‣ valid

‣ parties locally compute

[[x]](d) ⋅ [[y]](d) = [[x ⋅ y]](2d)

w ⇔ f1(w) = 0, …, fm(w) = 0

[[α]] = [[v]] +
m

∑
j=1

γj ⋅ fj([[w]])

Using multiplication homomorphism

• Shamir’s secret sharing satisfies:

• Simple protocol to verify polynomial constraints

‣ valid

‣ parties locally compute

[[x]](d) ⋅ [[y]](d) = [[x ⋅ y]](2d)

w ⇔ f1(w) = 0, …, fm(w) = 0

[[α]] = [[v]] +
m

∑
j=1

γj ⋅ fj([[w]])

Using multiplication homomorphism

• Shamir’s secret sharing satisfies:

• Simple protocol to verify polynomial constraints

‣ valid

‣ parties locally compute

[[x]](d) ⋅ [[y]](d) = [[x ⋅ y]](2d)

w ⇔ f1(w) = 0, …, fm(w) = 0

[[α]] = [[v]] +
m

∑
j=1

γj ⋅ fj([[w]])

randomness
from the verifier

Using multiplication homomorphism

• Shamir’s secret sharing satisfies:

• Simple protocol to verify polynomial constraints

‣ valid

‣ parties locally compute

[[x]](d) ⋅ [[y]](d) = [[x ⋅ y]](2d)

w ⇔ f1(w) = 0, …, fm(w) = 0

[[α]] = [[v]] +
m

∑
j=1

γj ⋅ fj([[w]])

pre-committed
sharing of 0

randomness
from the verifier

Using multiplication homomorphism

• Shamir’s secret sharing satisfies:

• Simple protocol to verify polynomial constraints

‣ valid

‣ parties locally compute

[[x]](d) ⋅ [[y]](d) = [[x ⋅ y]](2d)

w ⇔ f1(w) = 0, …, fm(w) = 0

[[α]] = [[v]] +
m

∑
j=1

γj ⋅ fj([[w]])

pre-committed
sharing of 0

randomness
from the verifier

check
false positive proba

α = 0
1/ |𝔽 |

Using multiplication homomorphism

• Shamir’s secret sharing satisfies:

• Simple protocol to verify polynomial constraints

‣ valid

‣ parties locally compute

[[x]](d) ⋅ [[y]](d) = [[x ⋅ y]](2d)

w ⇔ f1(w) = 0, …, fm(w) = 0

[[α]] = [[v]] +
m

∑
j=1

γj ⋅ fj([[w]]) Soundness error

(dα

ℓ)
(N

ℓ)
+ p

pre-committed
sharing of 0

randomness
from the verifier

check
false positive proba

α = 0
1/ |𝔽 |

Using multiplication homomorphism

• Shamir’s secret sharing satisfies:

• Simple protocol to verify polynomial constraints

‣ valid

‣ parties locally compute

[[x]](d) ⋅ [[y]](d) = [[x ⋅ y]](2d)

w ⇔ f1(w) = 0, …, fm(w) = 0

[[α]] = [[v]] +
m

∑
j=1

γj ⋅ fj([[w]]) Soundness error

(dα

ℓ)
(N

ℓ)
+ p

pre-committed
sharing of 0

randomness
from the verifier

check
false positive proba

α = 0
1/ |𝔽 |

 ℓ ⋅ deg fj (1
|𝔽 |)

#α
Here:

Using multiplication homomorphism

Signature from MQ and TCitH

• Parameters

- A field , (# variables) , (# equations)

• Let

- (MQ solution)

- (random matrices)

- (random vectors)

- s.t.

• From find

𝔽q n ∈ ℕ m ∈ ℕ

x ← 𝔽n
q

Ai ← 𝔽n×n
q ∀i ∈ [1 : m] m

bi ← 𝔽n
q ∀i ∈ [1 : m] m

y = (y1, …, ym) ∈ 𝔽m
q

y1 = xT A1x + bT
1 x

⋮
ym = xT Amx + bT

mx
({Ai}, {bi}, y) x

MQ Problem

💡
Checking a MQ instance
= checking quadratic

constraints on the secret
m

x

☝
We can directly apply
the previous protocol

⇒

sig 3 kB | | ≈

Original Size Our Variant Saving

Biscuit 4 758 B 4 048 B -15 %

MIRA 5 640 B 5 340 B -5 %

MiRitH-Ia 5 665 B 4 694 B -17 %

MiRitH-Ib 6 298 B 5 245 B -17 %

MQOM-31 6 328 B 4 027 B -37 %

MQOM-251 6 575 B 4 257 B -35 %

RYDE 5 956 B 5 281 B -11 %

SDitH 8 241 B 7 335 B -27 %

MQ over GF(4) 8 609 B 3 858 B -55 %

SD over GF(2) 11 160 B 7 354 B -34 %

SD over GF(2) 12 066 B 6 974 B -42 %

* N = 256

Shorter Signatures from TCitH-GGM

Original Size Our Variant Saving

Biscuit 4 758 B 3 431 B

MIRA 5 640 B 4 314 B

MiRitH-Ia 5 665 B 3 873 B

MiRitH-Ib 6 298 B 4 250 B

MQOM-31 6 328 B 3 567 B

MQOM-251 6 575 B 3 418 B

RYDE 5 956 B 4 274 B

SDitH 8 241 B 5 673 B

MQ over GF(4) 8 609 B 3 301 B

SD over GF(2) 11 160 B 7 354 B -34 %

SD over GF(2) 12 066 B 6 974 B -42 %

* N = 256 * N = 2048

Shorter Signatures from TCitH-GGM

Shorter Signatures from TCitH-GGM

Two very recent works :

• [BBMO+24] Baum, Beullens, Mukherjee, Orsini, Ramacher, Rechberger, Roy, Scholl. One
Tree to Rule Them All: Optimizing GGM Trees and OWFs for Post-Quantum Signatures.
https://ia.cr/2024/490

‣ General techniques to reduce the size of GGM trees: tree merging & proof of work

‣ Apply to TCitH-GGM (gain of ~500 B at 128-bit security)

• [BFGNR24] Bidoux, Feneuil, Gaborit, Neveu, Rivain. Dual Support Decomposition in the
Head: Shorter Signatures from Rank SD and MinRank. https://ia.cr/2024/541

‣ New MPC protocols for TCitH / VOLEitH signatures based on MinRank & Rank SD

https://ia.cr/2024/490
https://ia.cr/2024/541

MPCitH with additive
sharing, e.g.

[KKW18,BN20,DOT21]

Original TCitH
framework [FR23a]

Application of Shamir’s
secret sharing with Merkle

tree commitments

Connection to other proof systems

MPCitH with additive
sharing, e.g.

[KKW18,BN20,DOT21]

Original TCitH
framework [FR23a]

Application of Shamir’s
secret sharing with Merkle

tree commitments

General TCitH
framework [FR23b]

 + GGM variant
 + packed secret sharing
 + non-linear MPC protocols
 + degree-enforcing commitment

Connection to other proof systems

MPCitH with additive
sharing, e.g.

[KKW18,BN20,DOT21]

Original TCitH
framework [FR23a]

Application of Shamir’s
secret sharing with Merkle

tree commitments

General TCitH
framework [FR23b]

 + GGM variant
 + packed secret sharing
 + non-linear MPC protocols
 + degree-enforcing commitment

VOLE-in-the-Head
[BBDG+23]

VOLEitH = TCitH-GGM
with and

large field embedding
s = ℓ = 1

Connection to other proof systems

MPCitH with additive
sharing, e.g.

[KKW18,BN20,DOT21]

Original TCitH
framework [FR23a]

Application of Shamir’s
secret sharing with Merkle

tree commitments

General TCitH
framework [FR23b]

 + GGM variant
 + packed secret sharing
 + non-linear MPC protocols
 + degree-enforcing commitment

VOLE-in-the-Head
[BBDG+23]

Connection to other proof systems

Currently give the
 smallest signatures

VOLEitH = TCitH-GGM
with and

large field embedding
s = ℓ = 1

MPCitH with additive
sharing, e.g.

[KKW18,BN20,DOT21]

Original TCitH
framework [FR23a]

Application of Shamir’s
secret sharing with Merkle

tree commitments

General TCitH
framework [FR23b]

 + GGM variant
 + packed secret sharing
 + non-linear MPC protocols
 + degree-enforcing commitment

VOLE-in-the-Head
[BBDG+23]

Ligero
[AHIV17,AHIV23]

TCitH-MT with =
optimised version of the
Ligero concrete scheme

ΠLigero

Connection to other proof systems

VOLEitH = TCitH-GGM
with and

large field embedding
s = ℓ = 1

MPCitH with additive
sharing, e.g.

[KKW18,BN20,DOT21]

Original TCitH
framework [FR23a]

Application of Shamir’s
secret sharing with Merkle

tree commitments

General TCitH
framework [FR23b]

VOLE-in-the-Head
[BBDG+23]

Ligero
[AHIV17,AHIV23]

Connection to other proof systems

VOLEitH = TCitH-GGM
with and

large field embedding
s = ℓ = 1

Good for larger
statements

(e.g. lattices)

TCitH-MT with =
optimised version of the
Ligero concrete scheme

ΠLigero

Conclusion

Conclusion
• MPC-in-the-Head

‣ Versatile approach to build ZK proofs and (PQ) signatures

‣ Drastic improvements since 2017
(in particular thanks to GGM trees [KKW18])

‣ Applicable to any one-way function
 conservative / unstructured PQ assumptions

‣ Instrumental to advanced signatures / ZK proofs
 e.g. current shortest PQ ring signatures [FR23b]

• State of the art still moving!

‣ New frameworks: VOLEitH [BBDG+23], TCitH [FR23b]

‣ Compression of GGM trees [BBMO+24]

‣ Improvements for most MPCitH-based NIST submissions

→

→

Conclusion
• MPC-in-the-Head

‣ Versatile approach to build ZK proofs and (PQ) signatures

‣ Drastic improvements since 2017
(in particular thanks to GGM trees [KKW18])

‣ Applicable to any one-way function
 conservative / unstructured PQ assumptions

‣ Instrumental to advanced signatures / ZK proofs
 e.g. current shortest PQ ring signatures [FR23b]

• State of the art still moving!

‣ New frameworks: VOLEitH [BBDG+23], TCitH [FR23b]

‣ Compression of GGM trees [BBMO+24]

‣ Improvements for most MPCitH-based NIST submissions

→

→

Conclusion
• MPC-in-the-Head

‣ Versatile approach to build ZK proofs and (PQ) signatures

‣ Drastic improvements since 2017
(in particular thanks to GGM trees [KKW18])

‣ Applicable to any one-way function
 conservative / unstructured PQ assumptions

‣ Instrumental to advanced signatures / ZK proofs
 e.g. current shortest PQ ring signatures [FR23b]

• State of the art still moving!

‣ New frameworks: VOLEitH [BBDG+23], TCitH [FR23b]

‣ Compression of GGM trees [BBMO+24]

‣ Improvements for most MPCitH-based NIST submissions

→

→

What next?

You find out!

