Post-Quantum Signatures from MPC in the Head

Matthieu Rivain
PQ-TLS Summer School
Jun 19, 2024, Anglet
CRYPTOEXPERTS ${ }^{\text {吅 }}$
We innovate to secure your business

One-way function

$$
F: x \mapsto y
$$

E.g. AES, MQ system, Syndrome decoding

Multiparty computation (MPC)

Zero-knowledge proof

Signature scheme

signature

One-way function

$$
F: x \mapsto y
$$

E.g. AES, MO system, Syndrome decoding

signature

Multiparty computation (MPC)

MPC in the Head

Zero-knowledge proof

Roadmap

- MPC-in-the-Head with Additive Secret Sharing
- Optimisations
- SDitH Signature Scheme: MPCitH with Syndrome Decoding
- MPC-in-the-Head with Threshold Secret Sharing

MPC-in-the-Head with Additive Secret Sharing

MPC model

- Jointly compute

$$
g(x)= \begin{cases}\text { Accept } & \text { if } F(x)=y \\ \text { Reject } & \text { if } F(x) \neq y\end{cases}
$$

- ($N-1$) private: the views of any $N-1$ parties provide no information on x
- Semi-honest model: assuming that the parties follow the steps of the protocol

MPC model

- Jointly compute

$$
g(x)= \begin{cases}\text { Accept } & \text { if } F(x)=y \\ \text { Reject } & \text { if } F(x) \neq y\end{cases}
$$

- ($N-1$) private: the views of any $N-1$ parties provide no information on x
- Semi-honest model: assuming that the parties follow the steps of the protocol
- Broadcast model
- Parties locally compute on their shares $\llbracket x \rrbracket \mapsto \llbracket \alpha \rrbracket$
- Parties broadcast $\llbracket \alpha \rrbracket$ and recompute α
- Parties start again (now knowing α)

and so on...
$g:(y, \alpha, \beta, \ldots) \mapsto\left\{\begin{array}{l}\text { Accept } \\ \text { Reject }\end{array}\right.$

Example: matrix multiplication $y=H x$

$g(y, \alpha)=\left\{\begin{array}{ll}\text { Accept } & \text { if } y=\alpha \\ \text { Reject } & \text { if } y \neq \alpha\end{array} \quad g(y, \alpha)=\right.$ Accept $\Longleftrightarrow H x=y$

MPCitH transform

MPCitH transform

(1) Generate and commit shares $\llbracket x \rrbracket=\left(\llbracket x \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}\right)$
$\operatorname{Com}^{\rho_{1}}\left(\llbracket x \rrbracket_{1}\right)$

Prover

Verifier

MPCitH transform

(1) Generate and commit shares $\llbracket x \rrbracket=\left(\llbracket x \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}\right)$
(2) Run MPC in their head

$\operatorname{Com}^{\rho_{1}}\left(\llbracket x \rrbracket_{1}\right)$

Prover

Verifier

MPCitH transform

(1) Generate and commit shares

$$
\llbracket x \rrbracket=\left(\llbracket x \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}\right)
$$

(2) Run MPC in their head

$\operatorname{Com}^{\rho_{1}}\left(\llbracket x \rrbracket_{1}\right)$

(3) Chose a random party $i^{*} \leftarrow^{\$}\{1, \ldots, N\}$

Verifier

MPCitH transform

(1) Generate and commit shares

$$
\llbracket x \rrbracket=\left(\llbracket x \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}\right)
$$

(2) Run MPC in their head

(4) Open parties $\{1, \ldots, N\} \backslash\left\{i^{*}\right\}$

Prover
$\operatorname{Com}^{\rho_{1}}\left(\llbracket x \rrbracket_{1}\right)$

(3) Chose a random party $i^{*} \leftarrow^{\$}\{1, \ldots, N\}$

Verifier

MPCitH transform

(1) Generate and commit shares

$$
\llbracket x \rrbracket=\left(\llbracket x \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}\right)
$$

(2) Run MPC in their head

(4) Open parties $\{1, \ldots, N\} \backslash\left\{i^{*}\right\}$

Prover
$\operatorname{Com}^{\rho_{1}}\left(\llbracket x \rrbracket_{1}\right)$

Verifier

MPCitH transform

- Zero-knowledge \Longleftrightarrow MPC protocol is $(N-1)$-private

MPCitH transform

- Zero-knowledge \Longleftrightarrow MPC protocol is $(N-1)$-private
- Soundness
- if $g(y, \alpha) \neq$ Accept \rightarrow Verifier rejects

MPCitH transform

- Zero-knowledge \Longleftrightarrow MPC protocol is $(N-1)$-private
- Soundness
- if $g(y, \alpha) \neq$ Accept \rightarrow Verifier rejects
- if $g(y, \alpha)=$ Accept, then
- either $\llbracket x \rrbracket=$ sharing of correct witness $F(x)=y$
\rightarrow Prover honest

MPCitH transform

- Zero-knowledge \Longleftrightarrow MPC protocol is $(N-1)$-private
- Soundness
- if $g(y, \alpha) \neq$ Accept \rightarrow Verifier rejects
- if $g(y, \alpha)=$ Accept, then
- either $\llbracket x \rrbracket=$ sharing of correct witness $F(x)=y$
\rightarrow Prover honest
- or Prover has cheated for at least one party
\rightarrow Cheat undetected with proba $\frac{1}{N}$

MPCitH transform

- Zero-knowledge \Longleftrightarrow MPC protocol is $(N-1)$-private
- Soundness
- if $g(y, \alpha) \neq$ Accept \rightarrow Verifier rejects
- if $g(y, \alpha)=$ Accept, then

Soundness
error

- or Prover has cheated for at least one party
\rightarrow Cheat undetected with proba $\frac{1}{N}$

Example: matrix multiplication $y=H x$

Verifier

Check $\forall i \neq i^{*}$

- Commitments $\operatorname{Com}^{\rho_{i}}\left(\llbracket x \rrbracket_{i}\right)$
- MPC computation $\llbracket \alpha \rrbracket_{i}=H \cdot \llbracket x \rrbracket_{i}$

Check $\alpha:=\Sigma_{i} \llbracket \alpha \rrbracket_{i}=y$

Complete MPC model

Complete MPC model

Randomness oracle

Complete MPC model

False positive probability

- False positive $=$ MPC protocol outputs "Accept" while $\llbracket x \rrbracket$ s.t. $F(x) \neq y$

False positive probability

- False positive = MPC protocol outputs "Accept" while $\llbracket x \rrbracket$ s.t. $F(x) \neq y$
- False positive probability:

$$
p=\max _{\llbracket \beta \rrbracket} P[\mathrm{MPC}:(\llbracket x \rrbracket, \llbracket \beta \rrbracket, \varepsilon) \mapsto \text { "Accept" } \mid F(x) \neq y]
$$

(over the randomness of ε)

False positive probability

- False positive $=$ MPC protocol outputs "Accept" while $\llbracket x \rrbracket$ s.t. $F(x) \neq y$
- False positive probability:

$$
p=\max _{\llbracket \beta \rrbracket} P[\mathrm{MPC}:(\llbracket x \rrbracket, \llbracket \beta \rrbracket, \varepsilon) \mapsto \text { "Accept" } \mid F(x) \neq y]
$$

(over the randomness of ε)

- Soundness error:

$$
\frac{1}{N} \rightarrow \frac{1}{N}+p
$$

Example: [BN20] check product $x y=z$

Verifying arbitrary circuits

- Product-check protocol \Rightarrow protocol for checking any arithmetic circuit $C(x)=y$
- Principle:
- Let $\left\{c_{i}=a_{i} \cdot b_{i}\right\}$ all the multiplications in C
- Extended witness: $w=x \|\left(c_{1}, \ldots, c_{m}\right)$
- Compute $\llbracket y \rrbracket=$ linear function of $\llbracket w \rrbracket \quad \rightarrow \quad$ check $\llbracket y \rrbracket=$ sharing of y
- $\llbracket a_{i} \rrbracket, \llbracket b_{i} \rrbracket, \llbracket c_{i} \rrbracket=$ linear functions of $\llbracket w \rrbracket \quad \rightarrow$ product check on $\llbracket a_{i} \rrbracket, \llbracket b_{i} \rrbracket, \llbracket c_{i} \rrbracket$

Optimisations

Optimising communication (sig. size)

- Signature $=$ transcript $\mathbf{P} \rightarrow \mathrm{V}(\times \tau$ iterations $)$
- $\left\{\operatorname{Com}^{\rho_{i}}\left(\llbracket x \rrbracket_{i}\right)\right\} \rightarrow N$ commitments
- $\llbracket \alpha \rrbracket_{1}, \ldots, \llbracket \alpha \rrbracket_{N} \quad \rightarrow N$ MPC broadcasts
- $\left\{\llbracket x \rrbracket_{i}, \rho_{i}\right\}_{i \neq i^{*}} \rightarrow N-1$ input shares + random tapes

Optimising communication (sig. size)

- Signature $=$ transcript $\mathrm{P} \rightarrow \mathrm{V}(\times \tau$ iterations $)$
- $\left\{\operatorname{Com}^{\rho_{i}}\left(\llbracket x \rrbracket_{i}\right)\right\} \quad \rightarrow N$ commitments
- $\llbracket \alpha \rrbracket_{1}, \ldots, \llbracket \alpha \rrbracket_{N} \quad \rightarrow N$ MPC broadcasts
- $\left\{\llbracket x \rrbracket_{i}, \rho_{i}\right\}_{i \neq i^{*}} \rightarrow N-1$ input shares + random tapes
- First optimisation: hashing
$-\llbracket \alpha \rrbracket_{1}, \ldots, \llbracket \alpha \rrbracket_{N} \rightarrow h=\operatorname{Hash}\left(\llbracket \alpha \rrbracket_{1}, \ldots, \llbracket \alpha \rrbracket_{N}\right), \quad \alpha=\Sigma_{i} \llbracket \alpha \rrbracket_{i}$
- Verification
- $\llbracket \alpha \rrbracket_{i}=\varphi\left(\llbracket x \rrbracket_{i}\right) \quad \forall i \neq i^{*}$
- $\llbracket \alpha \rrbracket_{i^{*}}=\alpha-\Sigma_{i \neq i^{*}} \llbracket \alpha \rrbracket_{i}$
- Check $\operatorname{Hash}\left(\llbracket \alpha \rrbracket_{1}, \ldots, \llbracket \alpha \rrbracket_{N}\right)=h$

Optimising communication (sig. size)

- Signature $=$ transcript $\mathbf{P} \rightarrow \mathrm{V}(\times \tau$ iterations $)$
- $\left\{\operatorname{Com}^{\rho_{i}}\left(\llbracket x \rrbracket_{i}\right)\right\} \quad \rightarrow N$ commitments
$-\llbracket \alpha \rrbracket_{1}, \ldots, \llbracket \alpha \rrbracket_{N} \rightarrow$ NMPC broadeasts \rightarrow hash (+1 MPC broadcast)
- $\left\{\llbracket x \rrbracket_{i}, \rho_{i}\right\}_{i \neq i^{*}} \rightarrow N-1$ input shares + random tapes
- First optimisation: hashing
- $\llbracket \alpha \rrbracket_{1}, \ldots, \llbracket \alpha \rrbracket_{N} \rightarrow h=\operatorname{Hash}\left(\llbracket \alpha \rrbracket_{1}, \ldots, \llbracket \alpha \rrbracket_{N}\right), \quad \alpha=\Sigma_{i} \llbracket \alpha \rrbracket_{i}$
- Verification
- $\llbracket \alpha \rrbracket_{i}=\varphi\left(\llbracket x \rrbracket_{i}\right) \quad \forall i \neq i^{*}$
- $\llbracket \alpha \rrbracket_{i^{*}}=\alpha-\Sigma_{i \neq i^{*}} \llbracket \alpha \rrbracket_{i}$
- Check $\operatorname{Hash}\left(\llbracket \alpha \rrbracket_{1}, \ldots, \llbracket \alpha \rrbracket_{N}\right)=h$

Optimising communication (sig. size)

- Signature $=$ transcript $\mathbf{P} \rightarrow \mathrm{V}(\times \tau$ iterations $)$
- $\left\{\operatorname{Com}^{\rho_{i}}\left(\llbracket x \rrbracket_{i}\right)\right\} \rightarrow$ Ncommitments \rightarrow hash +1 commitment
$-\llbracket \alpha \rrbracket_{1}, \ldots, \llbracket \alpha \rrbracket_{N} \rightarrow$ NMPC broadeasts \rightarrow hash (+1 MPC broadcast)
- $\left\{\llbracket x \rrbracket_{i}, \rho_{i}\right\}_{i \neq i^{*}} \rightarrow N-1$ input shares + random tapes
- First optimisation: hashing
- $\llbracket \alpha \rrbracket_{1}, \ldots, \llbracket \alpha \rrbracket_{N} \rightarrow h=\operatorname{Hash}\left(\llbracket \alpha \rrbracket_{1}, \ldots, \llbracket \alpha \rrbracket_{N}\right), \quad \alpha=\Sigma_{i} \llbracket \alpha \rrbracket_{i}$
- Verification
- $\llbracket \alpha \rrbracket_{i}=\varphi\left(\llbracket x \rrbracket_{i}\right) \quad \forall i \neq i^{*}$
- $\llbracket \alpha \rrbracket_{i^{*}}=\alpha-\Sigma_{i \neq i^{*}} \llbracket \alpha \rrbracket_{i}$
- Check $\operatorname{Hash}\left(\llbracket \alpha \rrbracket_{1}, \ldots, \llbracket \alpha \rrbracket_{N}\right)=h$

Optimising communication (sig. size)

- Signature $=$ transcript $\mathbf{P} \rightarrow \mathrm{V}(\times \tau$ iterations $)$
- $\left\{\operatorname{Com}^{\rho_{i}}\left(\llbracket x \rrbracket_{i}\right)\right\} \rightarrow$ Ncommitments \rightarrow hash +1 commitment
- $\llbracket \alpha \rrbracket_{1}, \ldots, \llbracket \alpha \rrbracket_{N} \rightarrow$ N MPC broadcasts \rightarrow hash (+1 MPC broadcast)
$-\left\{\llbracket x \rrbracket_{i}, \rho_{i}\right\}_{i \neq i^{*}} \rightarrow N-1$ input shares + random tapes \quad main cost
- First optimisation: hashing
- $\llbracket \alpha \rrbracket_{1}, \ldots, \llbracket \alpha \rrbracket_{N} \rightarrow \quad h=\operatorname{Hash}\left(\llbracket \alpha \rrbracket_{1}, \ldots, \llbracket \alpha \rrbracket_{N}\right), \quad \alpha=\Sigma_{i} \llbracket \alpha \rrbracket_{i}$
- Verification
- $\llbracket \alpha \rrbracket_{i}=\varphi\left(\llbracket x \rrbracket_{i}\right) \quad \forall i \neq i^{*}$
- $\llbracket \alpha \rrbracket_{i^{*}}=\alpha-\Sigma_{i \neq i^{*}} \llbracket \alpha \rrbracket_{i}$
- Check $\operatorname{Hash}\left(\llbracket \alpha \rrbracket_{1}, \ldots, \llbracket \alpha \rrbracket_{N}\right)=h$

Second optimisation: seed trees

- [KKW18] Katz, Kolesnikov, Wang: "Improved Non-Interactive Zero Knowledge with Applications to Post-Quantum Signatures" (CCS 2018)

Second optimisation: seed trees

- [KKW18] Katz, Kolesnikov, Wang: "Improved Non-Interactive Zero Knowledge with Applications to Post-Quantum Signatures" (CCS 2018)
- Pseudorandom generation from seed
- $\left(\llbracket x \rrbracket_{i}, \rho_{i}\right) \leftarrow \operatorname{PRG}\left(\right.$ seed $\left._{i}\right)$
- $\llbracket x \rrbracket_{N}=x-\sum_{i=1}^{N} \llbracket x \rrbracket_{i}$

Second optimisation: seed trees

- [KKW18] Katz, Kolesnikov, Wang: "Improved Non-Interactive Zero Knowledge with Applications to Post-Quantum Signatures" (CCS 2018)
- Pseudorandom generation from seed
- $\left(\llbracket x \rrbracket_{i}, \rho_{i}\right) \leftarrow \operatorname{PRG}\left(\right.$ seed $\left._{i}\right)$
- $\llbracket x \rrbracket_{N}=x-\sum_{i=1}^{N} \llbracket x \rrbracket_{i}$
- Seeds $\left\{\operatorname{seed}_{i}\right\}$ generated from a common "root seed"

Second optimisation: seed trees

- [KKW18] Katz, Kolesnikov, Wang: "Improved Non-Interactive Zero Knowledge with Applications to Post-Quantum Signatures" (CCS 2018)
- Pseudorandom generation from seed
- $\left(\llbracket x \rrbracket_{i}, \rho_{i}\right) \leftarrow \operatorname{PRG}\left(\right.$ seed $\left._{i}\right)$
- $\llbracket x \rrbracket_{N}=x-\sum_{i=1}^{N} \llbracket x \rrbracket_{i}$
- Seeds $\left\{\operatorname{seed}_{i}\right\}$ generated from a common "root seed"
- Goal: revealing $\left\{\operatorname{seed}_{i}\right\}_{i \neq i^{*}}$ with less than $(N-1) \cdot \lambda$ bits

Second optimisation: seed trees

Second optimisation: seed trees

- Signature $=$ transcript $\mathrm{P} \rightarrow \mathrm{V}$
- $\left\{\operatorname{Com}^{\rho_{i}}\left(\llbracket x \rrbracket_{i}\right)\right\} \rightarrow$ Ncommitments \rightarrow hash +1 commitment
- $\llbracket \alpha \rrbracket_{1}, \ldots, \llbracket \alpha \rrbracket_{N} \rightarrow$ NMPC breadeasts \rightarrow hash (+1 MPC broadcast)
- $\left\{\llbracket x \rrbracket_{i}, \rho_{i}\right\}_{i \neq i^{*}} \rightarrow N-1$ input shares + random tapes $\rightarrow \log (N)$ seeds
$+\llbracket x \rrbracket_{N}$ if $i^{*} \neq N$

Second optimisation: seed trees

- Signature $=$ transcript $\mathrm{P} \rightarrow \mathrm{V}$
- $\left\{\operatorname{Com}^{\rho_{i}}\left(\llbracket x \rrbracket_{i}\right)\right\} \rightarrow$ Ncommitments \rightarrow hash +1 commitment
- $\llbracket \alpha \rrbracket_{1}, \ldots, \llbracket \alpha \rrbracket_{N} \rightarrow$ NMPC broadeasts \rightarrow hash (+1 MPC broadcast)
- $\left\{\llbracket x \rrbracket_{i}, \rho_{i}\right\}_{i \neq i^{*}} \rightarrow N-1$ input shares + random tapes $\rightarrow \log (N)$ seeds
- Verification
$+\llbracket x \rrbracket_{N}$ if $i^{*} \neq N$
- Sibling path $\rightarrow\left\{\text { seed }_{i}\right\}_{i \neq i^{*}}$
$-\operatorname{seed}_{i} \rightarrow\left(\llbracket x \rrbracket_{i}, \rho_{i}\right) \quad \forall i \neq i^{*}$
- ...

Optimising computation: hypercube technique

- [AGHHJY23] Aguilar Melchor, Gama, Howe, Hülsing, Joseph, Yue. "The Return of the SDitH" (EUROCRYPT 2023)

Optimising computation: hypercube technique

- [AGHHJY23] Aguilar Melchor, Gama, Howe, Hülsing, Joseph, Yue. "The Return of the SDitH" (EUROCRYPT 2023)
- High-level principle
- Apply MPC computation to sums of shares

$$
\Sigma_{i \in I} \llbracket x_{i} \rrbracket \xrightarrow{\varphi} \Sigma_{i \in I} \llbracket \alpha_{i} \rrbracket
$$

- Only $\log N+1$ such party computations necessary for the prover
- Only $\log N$ for the verifier

Optimising computation: hypercube technique

- [AGHHJY23] Aguilar Melchor, Gama, Howe, Hülsing, Joseph, Yue. "The Return of the SDitH" (EUROCRYPT 2023)
- High-level principle
- Apply MPC computation to sums of shares

$$
\Sigma_{i \in I} \llbracket x_{i} \rrbracket \xrightarrow{\varphi} \Sigma_{i \in I} \llbracket \alpha_{i} \rrbracket
$$

- Only $\log N+1$ such party computations necessary for the prover
- Only $\log N$ for the verifier
- See Nicolas Gama's talk at EC: https://youtu.be/z6nE4fOWvZA (49:33)

SDitH Signature Scheme: MPCitH with SD

Syndrome decoding problem

- Parameters
- A field $\mathbb{F}_{q}, \quad m \in \mathbb{N}$ (code length),$\quad k<m$ (code dimension), $w<m$ (weight)
- Let
- $H \leftarrow \mathbb{F}_{q}^{(m-k) \times m}$
(random parity-check matrix)
- $x \leftarrow \mathbb{F}_{q}^{m}$ s.t. $\mathrm{wt}(x) \leq w$
- $y=H x$

From (H, y) find x

Syndrome decoding problem

- Parameters
- A field $\mathbb{F}_{q}, \quad m \in \mathbb{N}$ (code length),$\quad k<m$ (code dimension), $w<m$ (weight)
- Let
- $H \leftarrow \mathbb{F}_{q}^{(m-k) \times m} \quad$ (random parity-check matrix)
- $x \leftarrow \mathbb{F}_{q}^{m}$ s.t. $\mathrm{wt}(x) \leq w \quad$ (SD solution)
- $y=H x$
(syndrome)
- $\operatorname{From}(H, y)$ find x
- Standard form (wlog): $H=\left(H^{\prime} \mid I_{m-k}\right) \Rightarrow y=H^{\prime} x_{A}+x_{B}$ where $x=\left(x_{A} \mid x_{B}\right)$

$$
\Rightarrow x_{B}=y-H^{\prime} x_{A}
$$

Polynomial expression

interpolation
$x — S(X)$

Polynomial expression

interpolation

$$
\begin{aligned}
& x \backsim S(X)
\end{aligned}
$$

$$
\begin{aligned}
& Q(X)=\prod_{i \in E}\left(X-f_{i}\right)
\end{aligned}
$$

Polynomial expression

interpolation

$$
Q(X)=\prod_{i \in E)}\left(X-f_{i}\right)
$$

Polynomial expression

interpolation

Polynomial expression

Polynomial expression

interpolation

$$
\begin{gathered}
\text { If } w \mathrm{t}(x) \leq w \text { then } \\
\exists Q \text { of degree } \leq w \text { s.t. } S(X) \cdot Q(X) \\
\text { evaluates to } 0 \text { in } f_{1}, \ldots, f_{m} \\
\Leftrightarrow \\
\exists Q, P \text { of degrees } \leq w, w-1 \text { s.t } \\
S(X) \cdot Q(X)=F(X) \cdot P(X)
\end{gathered}
$$

$\Rightarrow S(X) \cdot Q(X)$ evaluates to 0 in f_{1}, \ldots, f_{m}

Polynomial expression

SDitH MPC protocol

- Parties receive
- $\llbracket x_{A} \rrbracket, \llbracket P \rrbracket, \llbracket Q \rrbracket$ sharings of x_{A}, P, Q
- $\left(H^{\prime}, y\right) \mathrm{SD}$ instance

SDitH MPC protocol

- Parties receive
- $\llbracket x_{A} \rrbracket, \llbracket P \rrbracket, \llbracket Q \rrbracket$ sharings of x_{A}, P, Q
- $\left(H^{\prime}, y\right) \mathrm{SD}$ instance
- Parties jointly compute

$$
\begin{aligned}
& g\left(x_{A}, P, Q\right)= \begin{cases}\text { Accept } & \text { if } S Q=F P \\
\text { Reject } & \text { otherwise }\end{cases} \\
& \text { where } x_{B}=y-H^{\prime} x_{A} \text { and } S=\operatorname{Interp}\left(x_{A} \mid x_{B}\right)
\end{aligned}
$$

Schwartz-Zippel lemma

- Let P_{1} and P_{2} two degree- d polynomials of $\mathbb{F}[X]$
- Let r a random point of \mathbb{F},

$$
\begin{array}{r}
\operatorname{Pr}\left[P_{1}(r)=P_{2}(r) \mid P_{1} \neq P_{2}\right] \leq \frac{d}{|\mathbb{F}|} \\
\left(P_{1}(r)=P_{2}(r) \Leftrightarrow r \in \text { roots of } P_{1}-P_{2}\right)
\end{array}
$$

Schwartz-Zippel lemma

- Let P_{1} and P_{2} two degree- d polynomials of $\mathbb{F}[X]$
- Let r a random point of \mathbb{F},

$$
\begin{array}{r}
\operatorname{Pr}\left[P_{1}(r)=P_{2}(r) \mid P_{1} \neq P_{2}\right] \leq \frac{d}{|\mathbb{F}|} \\
\left(P_{1}(r)=P_{2}(r) \Leftrightarrow r \in \text { roots of } P_{1}-P_{2}\right)
\end{array}
$$

- For a random $r \in \mathbb{F}_{q}^{\eta}$,

$$
\operatorname{Pr}[S(r) \cdot Q(r)=F(r) \cdot P(r) \mid S Q \neq F P] \leq \frac{m+w-1}{q^{\eta}}
$$

SDitH MPC protocol

- Principle: check $S Q=F P$ on t random points (SZ lemma)

1. Locally compute $\llbracket x_{B} \rrbracket=y-H^{\prime} \llbracket x_{A} \rrbracket$
2. Locally compute $\llbracket S \rrbracket$ by Lagrange interpolation of $\llbracket x \rrbracket=\left(\llbracket x_{A} \rrbracket \mid \llbracket x_{B} \rrbracket\right)$
3. Randomness oracle $\rightarrow r_{1}, \ldots, r_{t} \in \mathbb{F}_{q}^{\eta}$
4. Locally compute $\llbracket S\left(r_{i}\right) \rrbracket, \llbracket Q\left(r_{i}\right) \rrbracket, F\left(r_{i}\right) \cdot \llbracket P\left(r_{i}\right) \rrbracket \quad \forall i \in[1: t]$
5. Check the product $S\left(r_{i}\right) \cdot Q\left(r_{i}\right)=F\left(r_{i}\right) \cdot P\left(r_{i}\right)$ from the shares

SDitH MPC protocol

- Principle: check $S Q=F P$ on t random points (SZ lemma)

1. Locally compute $\llbracket x_{B} \rrbracket=y-H^{\prime} \llbracket x_{A} \rrbracket$
2. Locally compute $\llbracket S \rrbracket$ by Lagrange interpolation of $\llbracket x \rrbracket=\left(\llbracket x_{A} \rrbracket \mid \llbracket x_{B} \rrbracket\right)$
3. Randomness oracle $\rightarrow r_{1}, \ldots, r_{t} \in \mathbb{F}_{q}^{\eta}, \varepsilon_{1}, \ldots, \varepsilon_{t} \in \mathbb{F}_{q}^{\eta}$
4. Locally compute $\llbracket S\left(r_{i}\right) \rrbracket, \llbracket Q\left(r_{i}\right) \rrbracket, F\left(r_{i}\right) \cdot \llbracket P\left(r_{i}\right) \rrbracket \quad \forall i \in[1: t]$
5. Check the product $S\left(r_{i}\right) \cdot Q\left(r_{i}\right)=F\left(r_{i}\right) \cdot P\left(r_{i}\right)$ from the shares

- using [BN20] product-check protocol

SDitH MPC protocol

- Principle: check $S Q=F P$ on t random points (SZ lemma)

1. Locally compute $\llbracket x_{B} \rrbracket=y-H^{\prime} \llbracket x_{A} \rrbracket$
2. Locally compute $\llbracket S \rrbracket$ by Lagrange interpolation of $\llbracket x \rrbracket=\left(\llbracket x_{A} \rrbracket \mid \llbracket x_{B} \rrbracket\right)$
3. Randomness oracle $\rightarrow r_{1}, \ldots, r_{t} \in \mathbb{F}_{q}^{\eta}, \varepsilon_{1}, \ldots, \varepsilon_{t} \in \mathbb{F}_{q}^{\eta}$
4. Locally compute $\llbracket S\left(r_{i}\right) \rrbracket, \llbracket Q\left(r_{i}\right) \rrbracket, F\left(r_{i}\right) \cdot \llbracket P\left(r_{i}\right) \rrbracket \quad \forall i \in[1: t]$
5. Check the product $S\left(r_{i}\right) \cdot Q\left(r_{i}\right)=F\left(r_{i}\right) \cdot P\left(r_{i}\right)$ from the shares

- using [BN20] product-check protocol
- False positive probability: $p=\sum_{i=0}^{t}\binom{t}{i}\left(\frac{m+w-1}{q^{\eta}}\right)^{i}\left(1-\frac{m+w-1}{q^{\eta}}\right)^{t-i}\left(\frac{1}{q^{\eta}}\right)^{t-i}$

SDitH signature scheme

Signature:

1. Generate random sharing $\llbracket x_{A} \rrbracket, \llbracket P \rrbracket, \llbracket Q \rrbracket, \llbracket a \rrbracket, \llbracket b \rrbracket, \llbracket c \rrbracket$
2. Commit the parties' shares:

$$
\llbracket x_{A} \rrbracket_{i}, \llbracket P \rrbracket_{i}, \llbracket Q \rrbracket_{i}, \llbracket a \rrbracket_{i}, \llbracket \downarrow \rrbracket_{i}, \llbracket c \rrbracket_{i} \xrightarrow{\text { Commit }} \operatorname{com}_{i}
$$

3. Derive the first challenge (randomness of MPC protocol):

$$
\operatorname{com}_{1}, \ldots, \operatorname{com}_{N} \xrightarrow{\text { Hash }} h_{1} \rightarrow r, \varepsilon
$$

4. Simulate the MPC protocol:

$$
\llbracket x_{A} \rrbracket, \llbracket P \rrbracket, \llbracket Q \rrbracket, \llbracket a \rrbracket, \llbracket b \rrbracket, \llbracket c \rrbracket, r, \varepsilon \quad \xrightarrow{\text { MPC }} \llbracket \alpha \rrbracket, \llbracket \beta \rrbracket, \llbracket v \rrbracket
$$

5. Derive the second challenge (index of non-opened party):

$$
h_{1}, \llbracket \alpha \rrbracket, \llbracket \beta \rrbracket, \llbracket v \rrbracket \quad \xrightarrow{\text { Hash }} h_{2} \rightarrow I
$$

6. Build the signature from

$$
h_{1}, h_{2},\left\{\llbracket x_{A} \rrbracket_{i}, \llbracket P \rrbracket_{i}, \llbracket Q \rrbracket_{i}, \llbracket a \rrbracket_{i}, \llbracket b \rrbracket_{i}, \llbracket c \rrbracket_{i}\right\}_{i \in I},\left\{\operatorname{com}_{i}, \llbracket \alpha \rrbracket_{i}, \llbracket \beta \rrbracket_{i}, \llbracket v \rrbracket_{i}\right\}_{i \notin I}
$$

SDitH signature scheme

Signature:

1. Generate random sharing $\llbracket x_{A} \rrbracket, \llbracket P \rrbracket, \llbracket Q \rrbracket, \llbracket a \rrbracket, \llbracket b \rrbracket, \llbracket c \rrbracket$
2. Commit the parties' shares:

$$
\llbracket x_{A} \rrbracket_{i}, \llbracket P \rrbracket_{i}, \llbracket Q \rrbracket_{i}, \llbracket a \rrbracket_{i}, \llbracket \downarrow \rrbracket_{i}, \llbracket c \rrbracket_{i} \xrightarrow{\text { Commit }} \operatorname{com}_{i}
$$

3. Derive the first challenge (randomness of MPC protocol):

4. Simulate the MPC protocol:

$$
\left.\llbracket x_{A} \rrbracket, \llbracket P \rrbracket, \llbracket Q \rrbracket, \llbracket a \rrbracket, \llbracket b \rrbracket, \llbracket c \rrbracket, r, \varepsilon \quad \xrightarrow{\mathrm{MPC}} \llbracket \alpha \rrbracket, \llbracket \beta \rrbracket, \llbracket v \rrbracket\right) \times \tau
$$

5. Derive the second challenge (index of non-opened party):

$$
h_{1}, \frac{\| \alpha \rrbracket, \llbracket \beta \rrbracket, \llbracket v \mathbb{\|}}{\chi} \xrightarrow{\text { Hash }} h_{2} \rightarrow I
$$

6. Build the signature from

SDitH signature scheme

Signature:

1. Generate random sharing $\llbracket x_{A} \rrbracket, \llbracket P \rrbracket, \llbracket Q \rrbracket, \llbracket a \rrbracket, \llbracket b \rrbracket, \llbracket c \rrbracket$
2. Commit the parties' shares:

$$
\llbracket x_{A} \rrbracket_{i}, \llbracket P \rrbracket_{i}, \llbracket Q \rrbracket_{i}, \llbracket a \rrbracket_{i}, \llbracket b \rrbracket_{i}, \llbracket c \rrbracket_{i} \xrightarrow{\text { Commit }} \operatorname{com}_{i}
$$

3. Derive the first challenge (randomness of MPC protocol):

4. Simulate the MPC protocol:

$$
\llbracket x_{A} \rrbracket, \llbracket P \rrbracket, \llbracket Q \rrbracket, \llbracket a \rrbracket, \llbracket b \rrbracket, \llbracket c \rrbracket, r, \varepsilon \xrightarrow{\mathrm{MPC}} \llbracket \alpha \rrbracket, \llbracket \beta \rrbracket, \llbracket v \rrbracket \times \tau
$$

5. Derive the second challenge (index of non-opened party):

$$
h_{1}, \frac{\| \alpha \rrbracket, \llbracket \beta \rrbracket, \llbracket v \mathbb{}}{\chi} \xrightarrow{\text { Hash }} h_{2} \rightarrow I
$$

6. Build the signature from

SDitH signature scheme

Parameter Set	MPCitH Parameters						Sizes (in bytes)			
	N	ℓ	τ	η	t	p	$p k$	$s k$	Sig. Avg	Sig. Max
SDitH-L1-hyp	2^{8}	-	17	4	3	$2^{-70.6}$	132	432	8476	8496
SDitH-L3-hyp	2^{8}	-	26	4	3	$2^{-71.8}$	180	628	19498	19544
SDitH-L5-hyp	2^{8}	-	34	4	4	$2^{-94.2}$	244	838	33843	33924

Instance	KeyGen		Sign		Verify	
	ms	cycles	sign ms	cycles	verify ms	cycles
SDitH-gf256-L1-hyp	5.47	14.2 M	4.18	10.8 M	3.74	9.7 M
SDitH-gf256-L3-hyp	6.41	16.6 M	10.13	26.2 M	8.83	22.9 M
SDitH-gf256-L5-hyp	11.06	28.7 M	19.25	49.9 M	16.98	44.0 M
SDitH-gf251-L1-hyp	3.05	7.9 M	8.17	21.2 M	7.83	20.3 M
SDitH-gf251-L3-hyp	3.67	9.5 M	17.98	46.6 M	17.08	44.3 M
SDitH-gf251-L5-hyp	6.36	16.5 M	32.73	84.8 M	31.26	81.0 M

SDitH signature scheme

Parameter Set	MPCitH Parameters						Sizes (in bytes)			
	N	ℓ	τ	η	t	p	$p k$	$s k$	Sig. Avg	Sig. Max
SDitH-L1-hyp	2^{8}	-	17	4	3	$2^{-70.6}$	132	432	8476	8496
SDitH-L3-hyp	2^{8}	-	26	4	3	$2^{-71.8}$	180	628	19498	19544
SDitH-L5-hyp	2^{8}	-	34	4	4	$2^{-94.2}$	244	838	33843	33924

128-bit security

Instance	KeyGen		Sign		Verify	
	ms	cycles	sign ms	cycles	verify ms	cycles
SDitH-gf256-L1-hyp	5.47	14.2 M	4.18	10.8 M	3.74	9.7 M
SDitH-gf256-L3-hyp	6.41	16.6 M	10.13	26.2 M	8.83	22.9 M
SDitH-gf256-L5-hyp	11.06	28.7 M	19.25	49.9 M	16.98	44.0 M
SDitH-gf251-L1-hyp	3.05	7.9 M	8.17	21.2 M	7.83	20.3 M
SDitH-gf251-L3-hyp	3.67	9.5 M	17.98	46.6 M	17.08	44.3 M
SDitH-gf251-L5-hyp	6.36	16.5 M	32.73	84.8 M	31.26	81.0 M

\exists variant based in MPCitH with threshold secret sharing

Parameter Set	MPCitH Parameters						Sizes (in bytes)			
	N	ℓ	τ	η	t	p	$p k$	$s k$	Sig. Avg	Sig. Max
SDitH-L1-hyp	2^{8}	-	17	4	3	$2^{-70.6}$	132	432	8476	8496
SDitH-L3-hyp	2^{8}	-	26	4	3	$2^{-71.8}$	180	628	19498	19544
SDitH-L5-hyp	2^{8}	-	34	4	4	$2^{-94.2}$	244	838	33843	33924

128-bit security

Instance	KeyGen		Sign		Verify	
	ms	cycles	sign ms	cycles	verify ms	cycles
SDitH-gf256-L1-hyp	5.47	14.2 M	4.18	10.8 M	3.74	9.7 M
SDitH-gf256-L3-hyp	6.41	16.6 M	10.13	26.2 M	8.83	22.9 M
SDitH-gf256-L5-hyp	11.06	28.7 M	19.25	49.9 M	16.98	44.0 M
SDitH-gf251-L1-hyp	3.05	7.9 M	8.17	21.2 M	7.83	20.3 M
SDitH-gf251-L3-hyp	3.67	9.5 M	17.98	46.6 M	17.08	44.3 M
SDitH-gf251-L5-hyp	6.36	16.5 M	32.73	84.8 M	31.26	81.0 M

MPC in the Head with Threshold Secret Sharing (a.k.a. TCitH)

Background: Shamir's secret sharing

$$
\llbracket x \rrbracket=\left(\llbracket x \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}\right)
$$

- Generate
- Let $\left(r_{1}, \ldots, r_{\ell}\right) \leftarrow \$$
- Let P the polynomial of coefficients $\left(x, r_{1}, \ldots, r_{\ell}\right)$

$$
\left\{\begin{array}{l}
\llbracket x \rrbracket_{1}=P\left(f_{1}\right) \\
\vdots \\
\llbracket x \rrbracket_{N}=P\left(f_{N}\right)
\end{array} \quad \text { with } f_{1}, \ldots, f_{N} \in \mathbb{F}\right. \text { distinct field elements }
$$

Background: Shamir's secret sharing

$$
\llbracket x \rrbracket=\left(\llbracket x \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}\right)
$$

- Generate
- Let $\left(r_{1}, \ldots, r_{\ell}\right) \leftarrow \$$
- Let P the polynomial of coefficients $\left(x, r_{1}, \ldots, r_{\ell}\right)$

$$
\left\{\begin{array}{l}
\llbracket x \rrbracket_{1}=P\left(f_{1}\right) \\
\vdots \\
\llbracket x \rrbracket_{N}=P\left(f_{N}\right)
\end{array} \quad \text { with } f_{1}, \ldots, f_{N} \in \mathbb{F}\right. \text { distinct field elements }
$$

- Reconstruct
- Interpolate P from $\llbracket x \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}$
- $x=P(0)$

Background: Shamir's secret sharing

- $(\ell+1, N)$-threshold linear secret sharing scheme (LSSS)
- Linearity: $\llbracket x \rrbracket+\llbracket y \rrbracket=\llbracket x+y \rrbracket$

Background: Shamir's secret sharing

- $(\ell+1, N)$-threshold linear secret sharing scheme (LSSS)
- Linearity: $\llbracket x \rrbracket+\llbracket y \rrbracket=\llbracket x+y \rrbracket$
- Any set of ℓ shares is random and independent of x
- Any set of $\ell+1$ shares \rightarrow coefficients $\left(x, r_{1}, \ldots, r_{\ell}\right) \rightarrow$ all the shares

Background: Shamir's secret sharing

- $(\ell+1, N)$-threshold linear secret sharing scheme (LSSS)
- Linearity: $\llbracket x \rrbracket+\llbracket y \rrbracket=\llbracket x+y \rrbracket$
- Any set of ℓ shares is random and independent of x
- Any set of $\ell+1$ shares \rightarrow coefficients $\left(x, r_{1}, \ldots, r_{\ell}\right) \rightarrow$ all the shares
- $\llbracket x \rrbracket=\left(\llbracket x \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}\right)$ is a Reed-Solomon codeword of $\left(x, r_{1}, \ldots, r_{\ell}\right)$

MPCitH with threshold LSSS (a.k.a TCitH)

- [FR23] Feneuil, Rivain. "Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head" (Asiacrypt 2023)
- ZK property \Rightarrow only open ℓ parties
- Verifier challenges a set $I \subseteq\{1, \ldots, N\}$ s.t. $|I|=\ell$
- Prover opens $\left\{\llbracket x \rrbracket_{i}, \rho_{i}\right\}_{i \in I}$

MPCitH with threshold LSSS (a.k.a TCitH)

(1) Generate and commit shares

$$
\llbracket x \rrbracket=\left(\llbracket x \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}\right)
$$

(2) Run MPC in their head

(4) Open parties in I
$\operatorname{Com}^{\rho_{1}}\left(\llbracket x \rrbracket_{1}\right)$

(3) Chose random set of parties
$I \subseteq\{1, \ldots, N\}$, s.t. $|I|=\ell$
(5) Check $\forall i \in I$

- Commitments $\operatorname{Com}^{\rho_{i}}\left(\llbracket x \rrbracket_{i}\right)$
- MPC computation $\llbracket \alpha \rrbracket_{i}=\varphi\left(\llbracket x \rrbracket_{i}\right)$

Check $g(y, \alpha)=$ Accept

Prover

MPCitH with threshold LSSS (a.k.a TCitH)

Sharing and commitments

Sharing and commitments

Sharing and commitments

Sharing and commitments

Opening $\llbracket x \rrbracket_{i}$
\Rightarrow need to prove that $\llbracket x \rrbracket_{i}$ is consistent with the root

Opening $\llbracket x \rrbracket_{i}$
\Rightarrow need to prove that $\llbracket x \rrbracket_{i}$
is consistent with the root

Opening $\llbracket x \rrbracket_{i}$
\Rightarrow need to prove that $\llbracket x \rrbracket_{i}$
is consistent with the root

Opening $\llbracket x \rrbracket_{i}$
\Rightarrow need to prove that $\llbracket x \rrbracket_{i}$
is consistent with the root

Opening $\llbracket x \rrbracket_{i}$
\Rightarrow need to prove that $\llbracket x \rrbracket_{i}$
is consistent with the root

Opening $\llbracket x \rrbracket_{i}$
\Rightarrow need to prove that $\llbracket x \rrbracket_{i}$
is consistent with the root

Opening $\llbracket x \rrbracket_{i}$
\Rightarrow need to prove that $\llbracket x \rrbracket_{i}$
is consistent with the root

MPCitH with threshold LSSS (a.k.a TCitH)

(1) Generate and commit shares

$$
\llbracket x \rrbracket=\left(\llbracket x \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}\right)
$$

(2) Run MPC in their head

(4) Open parties in I

Prover

(3) Chose random set of parties $I \subseteq\{1, \ldots, N\}$, s.t. $|I|=\ell$
(5) Check $\forall i \in I$

- Commitments $\operatorname{Com}^{\rho_{i}}\left(\llbracket x \rrbracket_{i}\right)$
- MPC computation $\llbracket \alpha \rrbracket_{i}=\varphi\left(\llbracket x \rrbracket_{i}\right)$

Check $g(y, \alpha)=$ Accept

Verifier

Soundness

- One would expect:

$$
P[\text { cheat detected }]=\frac{\ell}{N} \Rightarrow \text { Soundness error }=1-\frac{\ell}{N}
$$

Soundness

- One would expect:

(o- not really good

$$
P[\text { cheat detected }]=\frac{\ell}{N} \Rightarrow \text { Soundness error }=1-\frac{\ell}{N}
$$

Soundness

- One would expect:

$$
P[\text { cheat detected }]=\frac{\ell}{N} \quad \Rightarrow \quad \text { Soundness error }=1-\frac{\ell}{N}
$$

- But the verifier also check broadcast sharings $\llbracket \alpha \rrbracket$
- must be valid Shamir's secret sharings
- i.e. valid Reed-Solomon codewords
\Rightarrow limits the cheating possibilities

Soundness

- One would expect:

$$
P[\text { cheat detected }]=\frac{l}{N} \quad \Rightarrow \text { Soundnesser }=1-\frac{l}{N}
$$

- But the verifier also check broadcast sharings $\llbracket \alpha \rrbracket$
- must be valid Shamir's secret sharings
- i.e. valid Reed-Solomon codewords

$$
\Rightarrow \text { limits the cheating possibilities }
$$

- We actually have:

$$
\text { Soundness error }=\frac{1}{\binom{N}{\ell}}
$$

Soundness

- One would expect:

$$
P[\text { cheat detected }]=\frac{l}{N} \quad \Rightarrow \text { Soundness }=1-\frac{l}{N}
$$

- But the verifier also check broadcast sharings $\llbracket \alpha \rrbracket$
- must be valid Shamir's secret sharings
- i.e. valid Reed-Solomon codewords
with false positives
\Rightarrow limits the cheating possibilities
- We actually have:

$$
\frac{1}{\binom{N}{\ell}}+p \cdot \frac{\ell(N-\ell)}{\ell+1}
$$

Soundness

- One would expect:

$$
P[\text { cheat detected }]=\frac{l}{N} \quad \Rightarrow \text { Soundness }=1-\frac{l}{N}
$$

- But the verifier also check broadcast sharings $\llbracket \alpha \rrbracket$
- must be valid Shamir's secret sharings
- i.e. valid Reed-Solomon codewords
with false positives
\Rightarrow limits the cheating possibilities
- We actually have:

$$
\frac{1}{\binom{N}{\ell}}+p\left(\frac{\ell(N-\ell)}{\ell+1}\right)
$$

Soundness

$$
\frac{1}{\binom{N}{\ell}}+p\left(\frac{\ell(N-\ell)}{\ell+1}\right. \text { Why? }
$$

Soundness

$$
\frac{1}{\binom{N}{\ell}}+p\left(\frac{\ell(N-\ell)}{\ell+1}\right. \text { Why? }
$$

- Prover can commit invalid sharings
- Let $\llbracket x \rrbracket^{(J)}$ = sharing interpolating $\left(\llbracket x \rrbracket_{i}\right)_{i \in J}$
- Many different $\llbracket x \rrbracket^{(J)} \Rightarrow$ many possible false positives

Soundness

$$
\frac{1}{\binom{N}{\ell}}+p\left(\frac{\ell(N-\ell)}{\ell+1}\right. \text { Why? }
$$

- Prover can commit invalid sharings
- Let $\llbracket x \rrbracket^{(J)}$ = sharing interpolating $\left(\llbracket x \rrbracket_{i}\right)_{i \in J}$
- Many different $\llbracket x \rrbracket^{(J)} \Rightarrow$ many possible false positives
- "Degree-enforcing commitment scheme"
- Verifier \rightarrow Prover : random $\left\{\gamma_{j}\right\}$
- Prover \rightarrow Verifier : $\llbracket \xi \rrbracket=\Sigma_{j} \gamma_{i} \cdot \llbracket x_{j} \rrbracket$
- Before MPC computation

Soundness

$$
\frac{1}{\binom{N}{\ell}}+p\left(\frac{\ell(N-\ell)}{\ell+1}\right. \text { Why? }
$$

- Prover can commit invalid sharings
- Let $\llbracket x \rrbracket^{(J)}=$ sharing interpolating $\left(\llbracket x \rrbracket_{i}\right)_{i \in J}$
- Many different $\llbracket x \rrbracket^{(J)} \Rightarrow$ many possible false positives
- "Degree-enforcing commitment scheme"

- Verifier \rightarrow Prover: random $\left\{\gamma_{j}\right\}$
- Prover \rightarrow Verifier : $\llbracket \xi \rrbracket=\Sigma_{j} \gamma_{i} \cdot \llbracket x_{j} \rrbracket$
- Before MPC computation

Comparison

$$
\ell=1 \Rightarrow \text { Similar soundness: } \frac{1}{N}+p
$$

	MPCitH + seed trees + hypercube [AGHHJY23]	TCitH $\ell=1$
Prover runtime	Party emulations: $\log N+1$ Symmetric crypto: $O(N)$	Party emulations: 2 Symmetric crypto: $O(N)$

Comparison

$$
\ell=1 \Rightarrow \text { Similar soundness: } \frac{1}{N}+p
$$

	MPCitH + seed trees + hypercube [AGHHJY23]	TCitH $\ell=1$
Prover runtime	Party emulations: $\log N+1$ Symmetric crypto: $O(N)$	Party emulations: 2 Symmetric crypto: $O(N)$
Verifier runtime	Party emulations: $\log N$ Symmetric crypto: $O(N)$	Party emulations: 1 Symmetric crypto: $O(l o g ~ N)$

Comparison

$$
\ell=1 \Rightarrow \text { Similar soundness: } \frac{1}{N}+p
$$

	MPCitH + seed trees + hypercube [AGHHJY23]	TCitH $\ell=1$
Prover runtime	Party emulations: log $N+1$ Symmetric crypto: $O(N)$	Party emulations: 2 Symmetric crypto: $O(N)$
Verifier runtime	Party emulations: log N Symmetric crypto: $O(N)$	Party emulations: 1 Symmetric crypto: O(log N)
Size of tree	128-bit security: $\sim 2 \mathrm{~KB}$ 256-bit security: $\sim 8 \mathrm{~KB}$	128-bit security: $\sim 4 \mathrm{~KB}$ 256-bit security: $\sim 16 \mathrm{~KB}$

Comparison

$$
\ell=1 \Rightarrow \text { Similar soundness: } \frac{1}{N}+p
$$

Comparison

$$
\ell=1 \Rightarrow \text { Similar soundness: } \frac{1}{N}+p
$$

Getting rid of these limitations
\rightarrow TCitH with GGM tree

TCitH with GGM trees

Step 1: Generate a replicated secret sharing of x [ISN89]

TCitH with GGM trees

Step 1: Generate a replicated secret sharing of x [ISN89]

TCitH with GGM trees

Step 1: Generate a replicated secret sharing of x [ISN89]

Step 2: Convert it into a Shamir's secret sharing [CDIO5]

$$
\begin{aligned}
& \text { Let } P(X)=\Delta_{x}+\sum_{j} r_{j} P_{j}(X) \\
& \qquad \text { with } P_{j}(X)=1-\left(1 / e_{j}\right) \cdot X
\end{aligned}
$$

TCitH with GGM trees

Step 1: Generate a replicated secret sharing of x [ISN89]

Step 2: Convert it into a Shamir's secret sharing [CDI05]

$$
\begin{aligned}
& \text { Let } P(X)=\Delta_{x}+\sum_{j} r_{j} P_{j}(X) \\
& \qquad \text { with } P_{j}(X)=1-\left(1 / e_{j}\right) \cdot X \\
& \qquad \llbracket x \rrbracket=\left(P\left(e_{1}\right), \ldots, P\left(e_{N}\right)\right) \text { is a }
\end{aligned}
$$ valid Shamir's secret sharing of x

TCitH with GGM trees

Step 1: Generate a replicated secret sharing of x [ISN89]

Step 2: Convert it into a Shamir's secret sharing [CDIO5]

$$
\begin{aligned}
& \text { Let } P(X)=\Delta_{x}+\sum_{j} r_{j} P_{j}(X) \\
& \quad \text { with } P_{j}(X)=1-\left(1 / e_{j}\right) \cdot X \\
& \qquad \llbracket x \rrbracket=\left(P\left(e_{1}\right), \ldots, P\left(e_{N}\right)\right) \text { is a }
\end{aligned}
$$ valid Shamir's secret sharing of x

8 Party i can compute
$\llbracket x \rrbracket_{i}=\sum_{j \neq i} r_{j} P_{j}\left(e_{i}\right)$
(since $\left.P_{i}\left(e_{i}\right)=0\right)$

TCitH with GGM trees

Step 1: Generate a replicated secret sharing of x [ISN89]

Step 2: Convert it into a Shamir's secret sharing [CDIO5]

$$
\begin{aligned}
& \text { Let } P(X)=\Delta_{x}+\sum_{j} r_{j} P_{j}(X) \\
& \qquad \text { with } P_{j}(X)=1-\left(1 / e_{j}\right) \cdot X \\
& \quad \llbracket \llbracket x \rrbracket=\left(P\left(e_{1}\right), \ldots, P\left(e_{N}\right)\right) \text { is a } \\
& \text { valid Shamir's secret sharing of } x
\end{aligned}
$$

\checkmark Party i can compute

$$
\llbracket x \rrbracket_{i}=\sum_{j \neq i} r_{j} P_{j}\left(e_{i}\right)
$$

$$
\left(\text { since } P_{i}\left(e_{i}\right)=0\right)
$$

TCitH with GGM trees

Using multiplication homomorphism

- Shamir's secret sharing satisfies:

$$
\llbracket x \rrbracket^{(d)} \cdot \llbracket y \rrbracket^{(d)}=\llbracket x \cdot y \rrbracket^{(2 d)}
$$

Using multiplication homomorphism

- Shamir's secret sharing satisfies:

$$
\llbracket x \rrbracket^{(d)} \cdot \llbracket y \rrbracket^{(d)}=\llbracket x \cdot y \rrbracket^{(2 d)}
$$

- Simple protocol to verify polynomial constraints
- w valid $\Leftrightarrow f_{1}(w)=0, \ldots, f_{m}(w)=0$

Using multiplication homomorphism

- Shamir's secret sharing satisfies:

$$
\llbracket x \rrbracket^{(d)} \cdot \llbracket y \rrbracket^{(d)}=\llbracket x \cdot y \rrbracket^{(2 d)}
$$

- Simple protocol to verify polynomial constraints
- w valid $\Leftrightarrow f_{1}(w)=0, \ldots, f_{m}(w)=0$
- parties locally compute

$$
\llbracket \alpha \rrbracket=\llbracket v \rrbracket+\sum_{j=1}^{m} \gamma_{j} \cdot f_{j}(\llbracket w \rrbracket)
$$

Using multiplication homomorphism

- Shamir's secret sharing satisfies:

$$
\llbracket x \rrbracket^{(d)} \cdot \llbracket y \rrbracket^{(d)}=\llbracket x \cdot y \rrbracket^{(2 d)}
$$

- Simple protocol to verify polynomial constraints
- w valid $\Leftrightarrow f_{1}(w)=0, \ldots, f_{m}(w)=0$
- parties locally compute

$$
\llbracket \alpha \rrbracket=\llbracket v \rrbracket+\sum_{j=1}^{m} \gamma_{j} f_{j}(\llbracket w \rrbracket)
$$

Using multiplication homomorphism

- Shamir's secret sharing satisfies:

$$
\llbracket x \rrbracket^{(d)} \cdot \llbracket y \rrbracket^{(d)}=\llbracket x \cdot y \rrbracket^{(2 d)}
$$

- Simple protocol to verify polynomial constraints
- w valid $\Leftrightarrow f_{1}(w)=0, \ldots, f_{m}(w)=0$
- parties locally compute

Using multiplication homomorphism

- Shamir's secret sharing satisfies:

$$
\llbracket x \rrbracket^{(d)} \cdot \llbracket y \rrbracket^{(d)}=\llbracket x \cdot y \rrbracket^{(2 d)}
$$

- Simple protocol to verify polynomial constraints
- w valid $\Leftrightarrow f_{1}(w)=0, \ldots, f_{m}(w)=0$
- parties locally compute

check $\alpha=0$
false positive proba $1 /|\mathbb{F}|$
pre-committed sharing of 0
randomness from the verifier

Using multiplication homomorphism

- Shamir's secret sharing satisfies:

$$
\llbracket x \rrbracket^{(d)} \cdot \llbracket y \rrbracket^{(d)}=\llbracket x \cdot y \rrbracket^{(2 d)}
$$

- Simple protocol to verify polynomial constraints
- w valid $\Leftrightarrow f_{1}(w)=0, \ldots, f_{m}(w)=0$
- parties locally compute

check $\alpha=0$
false positive proba $1 /|\mathbb{F}|$
pre-committed sharing of 0

Soundness error

Using multiplication homomorphism

- Shamir's secret sharing satisfies:

$$
\llbracket x \rrbracket^{(d)} \cdot \llbracket y \rrbracket^{(d)}=\llbracket x \cdot y \rrbracket^{(2 d)}
$$

- Simple protocol to verify polynomial constraints
- w valid $\Leftrightarrow f_{1}(w)=0, \ldots, f_{m}(w)=0$
- parties locally compute
check $\alpha=0$
false positive proba $1 /|\mathbb{F}|$
pre-committed sharing of 0

Here: $\ell \cdot \operatorname{deg} f_{j}\left(\frac{1}{|\mathbb{F}|}\right)^{\# \alpha}$
Soundness error
randomness from the verifier

Signature from MQ and TCitH

MQ Problem

- Parameters
- A field $\mathbb{F}_{q}, n \in \mathbb{N}$ (\# variables),$\quad m \in \mathbb{N}$ (\# equations)
- Let
- $x \leftarrow \mathbb{F}_{q}^{n} \quad$ (MQ solution)
- $A_{i} \leftarrow \mathbb{F}_{q}^{n \times n} \forall i \in[1: m] \quad$ (m random matrices)
- $b_{i} \leftarrow \mathbb{F}_{q}^{n} \quad \forall i \in[1: m] \quad$ (m random vectors)
- $y=\left(y_{1}, \ldots, y_{m}\right) \in \mathbb{F}_{q}^{m} \quad$ s.t. $\left\{\begin{aligned} y_{1} & =x^{T} A_{1} x+b_{1}^{T} x \\ & \vdots \\ y_{m} & =x^{T} A_{m} x+b_{m}^{T} x\end{aligned}\right.$
- From $\left(\left\{A_{i}\right\},\left\{b_{i}\right\}, y\right)$ find x

Checking a MO instance = checking m quadratic constraints on the secret x

We can directly apply the previous protocol

$|s i g| \approx 3 \mathrm{kB}$

Shorter Signatures from TCitH-GGM

	Original Size	Our Variant	Saving
Biscuit	4758 B	4048 B	-15%
MIRA	5640 B	5340 B	-5%
MiRitH-la	5665 B	4694 B	-17%
MiRitH-lb	6298 B	5245 B	-17%
MQOM-31	6328 B	4027 B	-37%
MQOM-251	6575 B	4257 B	-35%
RYDE	5956 B	5281 B	-11%
SDitH	8241 B	7335 B	-27%

$M Q$ over GF(4)	8609 B	3858 B	-55%
SD over GF(2)	11160 B	7354 B	-34%
SD over GF(2)	12066 B	6974 B	-42%

$$
{ }^{\star} N=256
$$

Shorter Signatures from TCitH-GGM

	Original Size	Our Variant	Saving
Biscuit	4758 B	3431 B	
MIRA	5640 B	4314 B	
MiRitH-la	5665 B	3873 B	
MiRitH-lb	6298 B	4250 B	
MQOM-31	6328 B	3567 B	
MQOM-251	6575 B	3418 B	
RYDE	5956 B	4274 B	
SDitH	8241 B	5673 B	

$M Q$ over GF(4)	8609 B	3301 B	
SD over GF(2)	11160 B	7354 B	-34%
SD over GF(2)	12066 B	6974 B	-42%

$$
{ }^{\star} N=256 \quad * N=2048
$$

Shorter Signatures from TCitH-GGM

Two very recent works:

- [BBMO+24] Baum, Beullens, Mukherjee, Orsini, Ramacher, Rechberger, Roy, Scholl. One Tree to Rule Them All: Optimizing GGM Trees and OWFs for Post-Quantum Signatures. https://ia.cr/2024/490
- General techniques to reduce the size of GGM trees: tree merging \& proof of work
- Apply to TCitH-GGM (gain of ~ 500 B at 128-bit security)
- [BFGNR24] Bidoux, Feneuil, Gaborit, Neveu, Rivain. Dual Support Decomposition in the Head: Shorter Signatures from Rank SD and MinRank. https://ia.cr/2024/541
- New MPC protocols for TCitH / VOLEitH signatures based on MinRank \& Rank SD

Connection to other proof systems

Conclusion

Conclusion

- MPC-in-the-Head
- Versatile approach to build ZK proofs and (PQ) signatures
- Drastic improvements since 2017
(in particular thanks to GGM trees [KKW18])
- Applicable to any one-way function
\rightarrow conservative / unstructured PQ assumptions
- Instrumental to advanced signatures / ZK proofs
\rightarrow e.g. current shortest PQ ring signatures [FR23b]

Conclusion

- MPC-in-the-Head
- Versatile approach to build ZK proofs and (PQ) signatures
- Drastic improvements since 2017
(in particular thanks to GGM trees [KKW18])
- Applicable to any one-way function
\rightarrow conservative / unstructured PQ assumptions
- Instrumental to advanced signatures / ZK proofs
\rightarrow e.g. current shortest PQ ring signatures [FR23b]
- State of the art still moving!
- New frameworks: VOLEitH [BBDG+23], TCitH [FR23b]
- Compression of GGM trees [BBMO+24]
- Improvements for most MPCitH-based NIST submissions

Conclusion

- MPC-in-the-Head

What next?

- Versatile approach to build ZK proofs and (PQ) signatures
- Drastic improvements since 2017
(in particular thanks to GGM trees [KKW18])
- Applicable to any one-way function
\rightarrow conservative / unstructured PQ assumptions
- Instrumental to advanced signatures / ZK proofs
\rightarrow e.g. current shortest PQ ring signatures [FR23b]
- State of the art still moving!
- New frameworks: VOLEitH [BBDG+23], TCitH [FR23b]
- Compression of GGM trees [BBMO+24]
- Improvements for most MPCitH-based NIST submissions

You find out!

