Post-Quantum Signatures from MPC in the Head

- Mat⁻
- PQ-TLS Summer School
 - Jun 19, 2024, Anglet

Matthieu Rivain

Multiparty computation (MPC)

Input sharing [[x]]Joint evaluation of: $g(x) = \begin{cases} Accept & \text{if } F(x) = y \\ Reject & \text{if } F(x) \neq y \end{cases}$

Multiparty computation (MPC)

Input sharing [[x]]Joint evaluation of: $g(x) = \begin{cases} Accept & \text{if } F(x) = y \\ Reject & \text{if } F(x) \neq y \end{cases}$

MPC in the Head

- MPC-in-the-Head with Additive Secret Sharing
- Optimisations
- SDitH Signature Scheme: MPCitH with Syndrome Decoding
- MPC-in-the-Head with Threshold Secret Sharing

MPC-in-the-Head with Additive Secret Sharing

MPC model

TO STATE AND THE STATE OF THE DAY TO THE DAY AND THE ADDRESS OF THE DAY TO STATE OF TH

• Jointly compute

 $\llbracket x \rrbracket_3$

$$g(x) = \begin{cases} \text{Accept} & \text{if } F(x) = y \\ \text{Reject} & \text{if } F(x) \neq y \end{cases}$$

- (N-1) private: the views of any N-1 parties provide no information on x
- Semi-honest model: assuming that the parties follow the steps of the protocol

MPC model

• Jointly compute

$$g(x) = \begin{cases} \text{Accept} & \text{if } F(x) = y \\ \text{Reject} & \text{if } F(x) \neq y \end{cases}$$

- (N-1) **private:** the views of any N-1 parties provide no information on x
- Semi-honest model: assuming that the parties follow the steps of the protocol

• Broadcast model

 $\llbracket x \rrbracket_3$

- Parties locally compute on their shares $[x] \mapsto [\alpha]$
- Parties broadcast $[\![\alpha]\!]$ and recompute α
- Parties start again (now knowing α)

Example: matrix multiplication y = Hx

$$g(y, \alpha) = \begin{cases} \text{Accept} & \text{if } y = \alpha \\ \text{Reject} & \text{if } y \neq \alpha \end{cases}$$

$g(y, \alpha) = Accept \iff Hx = y$

Les and the second and

① Generate and commit shares $[[x]] = ([[x]]_1, ..., [[x]]_N)$

① Generate and commit shares $[[x]] = ([[x]]_1, ..., [[x]]_N)$

② Run MPC in their head

C
Co
sen
[[α

① Generate and commit shares $[[x]] = ([[x]]_1, ..., [[x]]_N)$

② Run MPC in their head

<u>Prover</u>

<u>Prover</u>

<u>Prover</u>

<u>Verifier</u>

• Zero-knowledge \iff MPC protocol is (N-1)-private

• Zero-knowledge \iff MPC protocol is (N-1)-private

Soundness

• if $g(y, \alpha) \neq Accept \rightarrow Verifier rejects$

- Zero-knowledge \iff MPC protocol is (N-1)-private
- Soundness
 - if $g(y, \alpha) \neq Accept \rightarrow Verifier rejects$
 - if $g(y, \alpha) = Accept$, then
 - either [[x]] = sharing of correct witness F(x) = y→ Prover honest

- Zero-knowledge \iff MPC protocol is (N-1)-private
- Soundness
 - if $g(y, \alpha) \neq Accept \rightarrow Verifier rejects$
 - if $g(y, \alpha) = Accept$, then
 - either [[x]] = sharing of correct witness F(x) = y→ Prover honest
 - or Prover has cheated for at least one party \rightarrow Cheat undetected with proba $\frac{1}{1}$

- Zero-knowledge \iff MPC protocol is (N-1)-private
- Soundness
 - if $g(y, \alpha) \neq Accept \rightarrow Verifier rejects$
 - if $g(y, \alpha) = Accept$, then
 - either [[x]] = sharing of correct witness F(x) = y
 - → Prover honest
 - or Prover has cheated for at least one party
 - \rightarrow Cheat undetected with proba $\frac{1}{1}$

Soundness error

Example: matrix multiplication y = Hx

<u>Verifier</u>

Check $\forall i \neq i^*$ - Commitments $\operatorname{Com}^{\rho_i}(\llbracket x \rrbracket_i)$ - MPC computation $\llbracket \alpha \rrbracket_i = H \cdot \llbracket x \rrbracket_i$ Check $\alpha := \Sigma_i \llbracket \alpha \rrbracket_i = y$

Randomness oracle

Hint oracle

 $\llbracket x \rrbracket_1$

 $\llbracket \beta \rrbracket_5$

8

 $[[x]]_{5}$

Randomness oracle $\varepsilon = radom$

challenge sent by the verifier

 $\llbracket x \rrbracket_1$

 $[\beta]_5$

8

 $\llbracket x \rrbracket_5$

Randomness oracle $\varepsilon = radom$

challenge sent by the verifier

False positive probability

• False positive = MPC protocol outputs "Accept" while [[x]] s.t. $F(x) \neq y$

False positive probability

- False positive probability:
 - $p = \max_{\llbracket \beta \rrbracket} P \Big[\mathsf{MPC} : (\llbracket x \rrbracket, \llbracket \beta \rrbracket, \varepsilon) \mapsto \mathsf{"Accept"} \mid F(x) \neq y \Big]$
 - (over the randomness of ε)

• False positive = MPC protocol outputs "Accept" while [x] s.t. $F(x) \neq y$

False positive probability

- False positive probability:
 - $p = \max_{[\beta]} P\left[\mathsf{MPC} : ([x]], [\beta]], \varepsilon \right) \mapsto "\mathsf{Accept}" \mid F(x) \neq y\right]$
 - (over the randomness of ε)
- Soundness error:

• False positive = MPC protocol outputs "Accept" while [[x]] s.t. $F(x) \neq y$

$$>$$
 $\frac{1}{N} + p$

Example: [BN20] check product xy = z

 $[[x]]_N, [[y]]_N, [[z]]_N$

Example: [BN20] check product xy = z

• • •

 \mathcal{P}_N

$[x]_1, [y]_1, [z]_1$ $[a]_1, [b]_1, [c]_1$

P

 $[x]_N, [y]_N, [z]_N$ $[a]_N, [b]_N, [c]_N$

 $\leftarrow hint \, ab = c$

Example: [BN20] check product xy = z

 $\leftarrow hint ab = c$ $\leftarrow random \varepsilon$
Example: [BN20] check product xy = z

 $\leftarrow hint ab = c$ $\leftarrow random \varepsilon$

 $\alpha = \epsilon x + a$ $\beta = y + b$

Example: [BN20] check product xy = z

Example: [BN20] check product xy = z

Example: [BN20] check product xy = z.

Example: [BN20] check product xy = z.

Verifying arbitrary circuits

- Product-check protocol \Rightarrow protocol for checking any arithmetic circuit C(x) = y
- Principle:
 - Let $\{c_i = a_i \cdot b_i\}$ all the multiplications in C
 - Extended witness: $w = x \parallel (c_1, ..., c_m)$
 - Compute [[y]] = linear function of $[[w]] \rightarrow$ check [[y]] = sharing of y
 - $[[a_i]], [[b_i]], [[c_i]] = \text{linear functions of } [[w]]$ \rightarrow product check on $[[a_i]], [[b_i]], [[c_i]]$

Optimisations

- Signature = transcript $P \rightarrow V (\times \tau \text{ iterations})$
 - $\{\operatorname{Com}^{\rho_i}(\llbracket x \rrbracket_i)\}$ $\rightarrow N \text{ commitments}$
 - $\llbracket \alpha \rrbracket_1, \dots, \llbracket \alpha \rrbracket_N \rightarrow N \operatorname{MPC} broadcasts$
 - $\{ [x]_i, \rho_i \}_{i \neq i^*}$ $\rightarrow N-1$ input shares + random tapes

- Signature = transcript $P \rightarrow V (\times \tau \text{ iterations})$
 - { $\operatorname{Com}^{\rho_i}(\llbracket x \rrbracket_i)$ } $\rightarrow N$ commitments
 - $\llbracket \alpha \rrbracket_1, \dots, \llbracket \alpha \rrbracket_N \rightarrow N \text{ MPC broadcasts}$
 - $\{ [x]_i, \rho_i \}_{i \neq i^*}$ $\rightarrow N-1$ input shares + random tapes
- First optimisation: hashing
 - $\llbracket \alpha \rrbracket_1, \dots, \llbracket \alpha \rrbracket_N \rightarrow h = \operatorname{Hash}(\llbracket \alpha \rrbracket_1, \dots, \llbracket \alpha \rrbracket_N), \quad \alpha = \sum_i \llbracket \alpha \rrbracket_i$
 - Verification
 - $[[\alpha]]_i = \varphi([[x]]_i) \quad \forall i \neq i^*$
 - $\left[\left[\alpha \right] \right]_{i^*} = \alpha \sum_{i \neq i^*} \left[\left[\alpha \right] \right]_i$
 - Check Hash($\llbracket \alpha \rrbracket_1, \dots, \llbracket \alpha \rrbracket_N$)

$$h) = h$$

- Signature = transcript $P \rightarrow V (\times \tau \text{ iterations})$
 - { $\operatorname{Com}^{\rho_i}(\llbracket x \rrbracket_i)$ } $\rightarrow N$ commitments
 - ► $[[\alpha]]_1, ..., [[\alpha]]_N \rightarrow NMPC \text{ broadcasts} \rightarrow \text{hash (+1 MPC broadcast)}$
 - $\{ [x]_i, \rho_i \}_{i \neq i^*}$ $\rightarrow N-1$ input shares + random tapes
- First optimisation: hashing
 - $\llbracket \alpha \rrbracket_1, \dots, \llbracket \alpha \rrbracket_N \rightarrow h = \operatorname{Hash}(\llbracket \alpha \rrbracket_1, \dots, \llbracket \alpha \rrbracket_N), \quad \alpha = \sum_i \llbracket \alpha \rrbracket_i$
 - Verification
 - $[[\alpha]]_i = \varphi([[x]]_i) \quad \forall i \neq i^*$
 - $\left[\left[\alpha \right] \right]_{i^*} = \alpha \sum_{i \neq i^*} \left[\left[\alpha \right] \right]_i$
 - Check Hash($\llbracket \alpha \rrbracket_1, \dots, \llbracket \alpha \rrbracket_N$)

$$h) = h$$

- Signature = transcript $P \rightarrow V (\times \tau \text{ iterations})$
 - $\{\operatorname{Com}^{\rho_i}(\llbracket x \rrbracket_i)\}$ $\rightarrow N \text{ commitments} \rightarrow \text{hash } +1 \text{ commitment}$
 - $[\![\alpha]\!]_1, \dots, [\![\alpha]\!]_N \rightarrow NMPC \text{ broadcasts} \rightarrow \text{hash (+1 MPC broadcast)}$
 - $\{ [x]_i, \rho_i \}_{i \neq i^*}$ $\rightarrow N-1$ input shares + random tapes
- First optimisation: hashing
 - $\llbracket \alpha \rrbracket_1, \dots, \llbracket \alpha \rrbracket_N \rightarrow h = \operatorname{Hash}(\llbracket \alpha \rrbracket_1, \dots, \llbracket \alpha \rrbracket_N), \quad \alpha = \sum_i \llbracket \alpha \rrbracket_i$
 - Verification
 - $[[\alpha]]_i = \varphi([[x]]_i) \quad \forall i \neq i^*$
 - $\left[\left[\alpha \right] \right]_{i^*} = \alpha \sum_{i \neq i^*} \left[\left[\alpha \right] \right]_i$
 - Check Hash($[[\alpha]]_1, \ldots, [[\alpha]]_N$)

$$h = h$$

- Signature = transcript $P \rightarrow V (\times \tau \text{ iterations})$
 - $\{\operatorname{Com}^{\rho_i}(\llbracket x \rrbracket_i)\}$ $\rightarrow N \text{ commitments} \rightarrow \text{hash } +1 \text{ commitment}$
 - $[\![\alpha]\!]_1, \dots, [\![\alpha]\!]_N \rightarrow NMPC \text{ broadcasts} \rightarrow \text{hash (+1 MPC broadcast)}$
 - $\{ [x]_i, \rho_i \}_{i \neq i^*}$ $\rightarrow N-1$ input shares + random tapes
- First optimisation: hashing
 - $\llbracket \alpha \rrbracket_1, \dots, \llbracket \alpha \rrbracket_N \rightarrow h = \operatorname{Hash}(\llbracket \alpha \rrbracket_1, \dots, \llbracket \alpha \rrbracket_N), \quad \alpha = \sum_i \llbracket \alpha \rrbracket_i$
 - Verification
 - $[[\alpha]]_i = \varphi([[x]]_i) \quad \forall i \neq i^*$
 - $\left[\left[\alpha \right] \right]_{i^*} = \alpha \sum_{i \neq i^*} \left[\left[\alpha \right] \right]_i$
 - Check Hash($\llbracket \alpha \rrbracket_1, \dots, \llbracket \alpha \rrbracket_N$)

$$h = h$$

main cost

• [KKW18] Katz, Kolesnikov, Wang: "Improved Non-Interactive Zero

- [KKW18] Katz, Kolesnikov, Wang: "Improved Non-Interactive Zero
- Pseudorandom generation from seed
 - $(\llbracket x \rrbracket_i, \rho_i) \leftarrow \text{PRG}(\text{seed}_i)$
 - $[[x]]_N = x \sum_{i=1}^N [[x]]_i$

- [KKW18] Katz, Kolesnikov, Wang: "Improved Non-Interactive Zero
- Pseudorandom generation from seed
 - $(\llbracket x \rrbracket_i, \rho_i) \leftarrow \text{PRG}(\text{seed}_i)$
 - $[[x]]_N = x \sum_{i=1}^N [[x]]_i$
- Seeds {seed_i} generated from a common "root seed"

- [KKW18] Katz, Kolesnikov, Wang: "Improved Non-Interactive Zero
- Pseudorandom generation from seed
 - $(\llbracket x \rrbracket_i, \rho_i) \leftarrow \text{PRG}(\text{seed}_i)$
 - $[[x]]_N = x \sum_{i=1}^N [[x]]_i$
- Seeds {seed_i} generated from a common "root seed"
- Goal: revealing $\{seed_i\}_{i \neq i^*}$ with less than $(N-1) \cdot \lambda$ bits

Service and the service of the service and the service of the serv

to be revealed

- Signature = transcript $P \rightarrow V$
 - $\{\operatorname{Com}^{\rho_i}(\llbracket x \rrbracket_i)\} \rightarrow N \text{ commitments} \rightarrow \text{hash} + 1 \text{ commitment}$
 - $[\![\alpha]\!]_1, \ldots, [\![\alpha]\!]_N \rightarrow NMPC \text{ broadcasts} \rightarrow \text{hash (+1 MPC broadcast)}$
 - ► { $[[x]]_i, \rho_i$ }_{*i*≠*i**} → <u>N − 1 input shares + random tapes</u> → log(N) seeds + $[[x]]_N$ if $i^* \neq N$

- Signature = transcript $P \rightarrow V$
 - $\{\operatorname{Com}^{\rho_i}(\llbracket x \rrbracket_i)\} \rightarrow N \text{ commitments} \rightarrow \text{hash} + 1 \text{ commitment}$
 - $[[\alpha]]_1, ..., [[\alpha]]_N \rightarrow N MPC broadcasts \rightarrow hash (+1 MPC broadcast)$
 - ► { $[[x]]_i, \rho_i$ }_{*i*≠*i**} → <u>N 1 input shares + random tapes</u> → log(N) seeds + $\llbracket x \rrbracket_N$ if $i^* \neq N$
- Verification
 - Sibling path \rightarrow {seed_i}_{i \neq i*}
 - seed_i \rightarrow ($[[x]]_i, \rho_i$) $\forall i \neq i^*$

• • •

Optimising computation: hypercube technique

• [AGHHJY23] Aguilar Melchor, Gama, Howe, Hülsing, Joseph, Yue. "The Return of the SDitH" (EUROCRYPT 2023)

Optimising computation: hypercube technique

- Return of the SDitH" (EUROCRYPT 2023)
- High-level principle
 - Apply MPC computation to sums of shares
 - $\Sigma_{i \in I} \llbracket x_i \rrbracket \xrightarrow{\varphi} \Sigma_{i \in I} \llbracket \alpha_i \rrbracket$

 - Only log N for the verifier

• [AGHHJY23] Aguilar Melchor, Gama, Howe, Hülsing, Joseph, Yue. "The

• Only $\log N + 1$ such party computations necessary for the prover

Optimising computation: hypercube technique

- Return of the SDitH" (EUROCRYPT 2023)
- High-level principle
 - Apply MPC computation to sums of shares
 - $\Sigma_{i \in I} \llbracket x_i \rrbracket \xrightarrow{\varphi} \Sigma_{i \in I} \llbracket \alpha_i \rrbracket$

 - Only log N for the verifier

• [AGHHJY23] Aguilar Melchor, Gama, Howe, Hülsing, Joseph, Yue. "The

• Only $\log N + 1$ such party computations necessary for the prover

See Nicolas Gama's talk at EC: <u>https://youtu.be/z6nE4fOWvZA</u> (49:33)

SDitH Signature Scheme: MPCitH with SD

Syndrome decoding problem

- Parameters

• Let

•
$$H \leftarrow \mathbb{F}_q^{(m-k) \times m}$$
 (ra

•
$$x \leftarrow \mathbb{F}_q^m$$
 s.t. $\operatorname{wt}(x) \le w$ (SE

• y = Hx

• From (H, y) find x

• A field \mathbb{F}_{q} , $m \in \mathbb{N}$ (code length), k < m (code dimension), w < m (weight)

andom parity-check matrix)

D solution)

(syndrome)

Syndrome decoding problem

- Parameters

• Let

•
$$H \leftarrow \mathbb{F}_q^{(m-k) \times m}$$
 (ra

•
$$x \leftarrow \mathbb{F}_q^m$$
 s.t. $\operatorname{wt}(x) \le w$ (SE

- y = Hx
- From (H, y) find x
- Standard form (wlog): $H = (H' | I_{m-k}) \Rightarrow$

• A field \mathbb{F}_a , $m \in \mathbb{N}$ (code length), k < m (code dimension), w < m (weight)

andom parity-check matrix)

D solution)

(syndrome)

$$|x_A| = k \qquad |x_B| = m - k$$

$$y = H'x_A + x_B \qquad \text{where} \qquad x = (x_A \mid x_B)$$

 $\Rightarrow x_B = y - H' x_A$

$Q(X) = \prod (X - f_i)$ $i \in E$

$Q(X) = \prod_{i \in E} (X - f_i)$ indices *i* s.t. $x_i \neq 0$ $|E| \le w \implies \deg(Q) \le w$

$Q(X) = \prod_{i \in E} (X - f_i)$ indices *i* s.t. $x_i \neq 0$ $|E| \le w \Rightarrow \deg(Q) \le w$

- = zero coordinate
- = non-zero coordinate

 \Rightarrow $S(X) \cdot Q(X)$ evaluates to 0 in f_1, \dots, f_m

$Q(X) = \left[\begin{array}{c} (X - f_i) \end{array} \right]$ $i \in E$ If $wt(x) \le w$ then $\exists Q \text{ of degree} \leq w \text{ s.t. } S(X) \cdot Q(X)$ evaluates to 0 in f_1, \ldots, f_m \Leftrightarrow $\exists Q, P \text{ of degrees} \leq w, w - 1 \text{ s.t}$ $S(X) \cdot Q(X) = F(X) \cdot P(X)$

Polynomial expression

 \Rightarrow $S(X) \cdot Q(X)$ evaluates to 0 in f_1, \dots, f_m

• Parties receive

- [[*x_A*]], [[*P*]], [[*Q*]] sharings of *x_A*, *P*, *Q*
- (H', y) SD instance

• Parties receive

- $[[x_A]], [[P]], [[Q]] \text{ sharings of } x_A, P, Q$
- (H', y) SD instance
- Parties jointly compute

 $g(x_A, P, Q) = \begin{cases} \text{Accept} & \text{if } SQ = FP \\ \text{Reject} & \text{otherwise} \end{cases}$ where $x_B = y - H'x_A$ and $S = \text{Interp}(x_A | x_B)$

Schwartz-Zippel lemma

- Let P_1 and P_2 two degree-*d* polynomials of $\mathbb{F}[X]$
- Let r a random point of \mathbb{F} ,
 - $\Pr[P_1(r) = P_2(r) | P_1 \neq$
 - $(P_1(r) = P_2(r) \Leftrightarrow r \in roots of$

$$\neq P_2 \Big] \leq \frac{d}{|\mathbb{F}|}$$

$$f P_1 - P_2 \Big)$$

Schwartz-Zippel lemma

- Let P_1 and P_2 two degree-*d* polynomials of $\mathbb{F}[X]$
- Let r a random point of \mathbb{F} ,

$$\Pr\left[P_1(r) = P_2(r) \mid P_1 \neq P_2\right] \leq \frac{d}{|\mathbb{F}|}$$
$$P_2(r) \iff r \in \text{roots of } P_1 - P_2$$

 $(P_1(r) = P$

- For a random $r \in \mathbb{F}_q^{\eta}$,
 - $\Pr\left[S(r) \cdot Q(r) = F(r) \cdot\right]$

$$P(r) \mid SQ \neq FP \right] \leq \frac{m + w - 1}{q^{\eta}}$$

- Principle: check SQ = FP on t random points (SZ lemma)
 - 1. Locally compute $[[x_B]] = y H'[[x_A]]$
 - 2. Locally compute [[S]] by Lagrange interpolation of $[[x]] = ([[x_A]] | [[x_B]])$
 - 3. Randomness oracle $\rightarrow r_1, ..., r_t \in \mathbb{F}_q^{\eta}$
 - 4. Locally compute $[[S(r_i)]], [[Q(r_i)]], F(r_i) \cdot [[P(r_i)]] \quad \forall i \in [1:t]$
 - 5. Check the product $S(r_i) \cdot Q(r_i) = F(r_i) \cdot P(r_i)$ from the shares

- Principle: check SQ = FP on t random points (SZ lemma)
 - 1. Locally compute $[[x_B]] = y H'[[x_A]]$

 - 3. Randomness oracle $\rightarrow r_1, ..., r_t \in \mathbb{F}_a^{\eta}, \varepsilon_1, ..., \varepsilon_t \in \mathbb{F}_a^{\eta}$
 - 4. Locally compute $[[S(r_i)]], [[Q(r_i)]], F(r_i) \cdot [[P(r_i)]] \quad \forall i \in [1:t]$
 - 5. Check the product $S(r_i) \cdot Q(r_i) = F(r_i) \cdot P(r_i)$ from the shares
 - using [BN20] product-check protocol

2. Locally compute [[S]] by Lagrange interpolation of $[[x]] = ([[x_A]] | [[x_B]])$

- Principle: check SQ = FP on t random points (SZ lemma)
 - 1. Locally compute $[[x_B]] = y H'[[x_A]]$

 - 3. Randomness oracle $\rightarrow r_1, ..., r_t \in \mathbb{F}_a^{\eta}, \varepsilon_1, ..., \varepsilon_t \in \mathbb{F}_a^{\eta}$
 - 4. Locally compute $[[S(r_i)]], [[Q(r_i)]], F(r_i) \cdot [[P(r_i)]] \quad \forall i \in [1:t]$
 - 5. Check the product $S(r_i) \cdot Q(r_i) = F(r_i) \cdot P(r_i)$ from the shares
 - using [BN20] product-check protocol

• False positive probability: $p = \sum_{n=1}^{\infty} (p_{n})^{n}$

2. Locally compute [[S]] by Lagrange interpolation of $[[x]] = ([[x_A]] | [[x_B]])$

$$\binom{t}{i} \left(\frac{m+w-1}{q^{\eta}}\right)^{i} \left(1-\frac{m+w-1}{q^{\eta}}\right)^{t-i} \left(\frac{1}{q^{\eta}}\right)^{t-i}$$

Signature:

- 2. Commit the parties' shares:

 $\operatorname{com}_1, \ldots, \operatorname{com}_N \xrightarrow{\operatorname{Hash}} h_1 \to r, \varepsilon$ $h_1, \llbracket \alpha \rrbracket, \llbracket \beta \rrbracket, \llbracket v \rrbracket \xrightarrow{\text{Hash}} h_2 \to I$

4. Simulate the MPC protocol:

 $\llbracket x_A \rrbracket_i, \llbracket P \rrbracket_i, \llbracket Q \rrbracket_i, \llbracket a \rrbracket_i, \llbracket b \rrbracket_i, \llbracket c \rrbracket_i \xrightarrow{\operatorname{Commit}} \operatorname{com}_i$

6. Build the signature from

1. Generate random sharing $\llbracket x_A \rrbracket$, $\llbracket P \rrbracket$, $\llbracket Q \rrbracket$, $\llbracket a \rrbracket$, $\llbracket b \rrbracket$, $\llbracket c \rrbracket$ 3. Derive the first challenge (randomness of MPC protocol): $\llbracket x_A \rrbracket, \llbracket P \rrbracket, \llbracket Q \rrbracket, \llbracket a \rrbracket, \llbracket b \rrbracket, \llbracket c \rrbracket, r, \varepsilon \xrightarrow{\operatorname{MPC}} \llbracket \alpha \rrbracket, \llbracket \beta \rrbracket, \llbracket v \rrbracket$ 5. Derive the second challenge (index of non-opened party): $h_1, h_2, \left\{ [\![x_A]\!]_i, [\![P]\!]_i, [\![Q]\!]_i, [\![a]\!]_i, [\![b]\!]_i, [\![c]\!]_i \right\}_{i \in I}, \left\{ \mathsf{com}_i, [\![\alpha]\!]_i, [\![\beta]\!]_i, [\![v]\!]_i \right\}_{i \notin I}$

Signature:

- 2. Commit the parties' shares:

4. Simulate the MPC protocol:

6. Build the signature from

Signature:

- 2. Commit the parties' shares:

4. Simulate the MPC protocol:

6. Build the signature from

The Alexandread and a second and a second

Parameter		MP	\mathbf{CitH}	Par	rame	ters		es)		
Set	N	ℓ	au	η	t	p	pk	sk	Sig. Avg	Sig. Max
SDitH-L1-hyp	2^8	_	17	4	3	$2^{-70.6}$	132	432	8476	8496
${ m SDitH} ext{-L3-hyp}$	2^8	_	26	4	3	$2^{-71.8}$	180	628	19498	19544
SDitH-L5-hyp	2^8	_	34	4	4	$2^{-94.2}$	244	838	33843	33924

TA TO THE ACTION AND A THE ACTION AND A STORE AND A

Instance	Key	vGen	Sig	<u>y</u> n	Verify		
Instance	ms	cycles	sign ms	cycles	verify ms	cycles	
SDitH-gf256-L1-hyp	5.47	14.2M	4.18	10.8M	3.74	$9.7 \mathrm{M}$	
${ m SDitH}$ -gf256-L3-hyp	6.41	16.6M	10.13	$26.2 \mathrm{M}$	8.83	$22.9\mathrm{M}$	
SDitH-gf256-L5-hyp	11.06	$28.7\mathrm{M}$	19.25	$49.9 \mathrm{M}$	16.98	44.0M	
SDitH-gf251-L1-hyp	3.05	$7.9\mathrm{M}$	8.17	21.2M	7.83	$20.3 \mathrm{M}$	
SDitH-gf251-L3-hyp	3.67	$9.5\mathrm{M}$	17.98	46.6M	17.08	44.3M	
SDitH-gf251-L5-hyp	6.36	$16.5 \mathrm{M}$	32.73	84.8M	31.26	81.0M	

Parameter	MPCitH Parameters							Sizes (in bytes)					
Set	\overline{N}	ℓ	au	η	t	p	-	pk	sk	Sig. Avg	Sig. Max		
SDitH-L1-hyp	2^8	_	17	4	3	$2^{-70.6}$		132	432	8476	8 4 9 6		
SDitH-L3-hyp	2^8	_	26	4	3	$2^{-71.8}$		180	628	19498	19544		
SDitH-L5-hyp	2^8	_	34	4	4	$2^{-94.2}$		244	838	33843	33924		

128-bit security		Key	Gen	Sig	n	Verify		
	Instance		cycles	$\operatorname{sign}\mathrm{ms}$	cycles	verify ms	cycles	
	SDitH-gf256-L1-hyp	5.47	$14.2\mathrm{M}$	4.18	$10.8 \mathrm{M}$	3.74	$9.7\mathrm{M}$	
	SDitH-gf256-L3-hyp	6.41	$16.6 \mathrm{M}$	10.13	$26.2 \mathrm{M}$	8.83	$22.9\mathrm{M}$	
	SDitH-gf256-L5-hyp	11.06	$28.7 \mathrm{M}$	19.25	$49.9 \mathrm{M}$	16.98	44.0M	
	SDitH-gf251-L1-hyp	3.05	$7.9\mathrm{M}$	8.17	21.2M	7.83	$20.3 \mathrm{M}$	
	SDitH-gf251-L3-hyp	3.67	$9.5 \mathrm{M}$	17.98	46.6M	17.08	$44.3 \mathrm{M}$	
	SDitH-gf251-L5-hyp	6.36	$16.5 \mathrm{M}$	32.73	$84.8 \mathrm{M}$	31.26	81.0M	

The second and the second and the second and the

Parameter	MPCitH Parameters							Sizes (in bytes)				
\mathbf{Set}	\overline{N}	ℓ	au	η	t	p	-	pk	sk	Sig. Avg	Sig. Max	
SDitH-L1-hyp	2^8	_	17	4	3	$2^{-70.6}$		132	432	8476	8 4 9 6	
SDitH-L3-hyp	2^8	_	26	4	3	$2^{-71.8}$		180	628	19498	19544	
SDitH-L5-hyp	2^8	_	34	4	4	$2^{-94.2}$		244	838	33843	33924	

128-bit see	128-bit security Instance		vGen	Sig	'n	Verify		
			cycles	sign ms	cycles	verify ms	cycles	
	SDitH-gf256-L1-hyp	5.47	$14.2\mathrm{M}$	4.18	$10.8 \mathrm{M}$	3.74	9.7M	
	SDitH-gf256-L3-hyp	6.41	$16.6 \mathrm{M}$	10.13	$26.2 \mathrm{M}$	8.83	$22.9\mathrm{M}$	
	SDitH-gf256-L5-hyp	11.06	$28.7\mathrm{M}$	19.25	$49.9 \mathrm{M}$	16.98	44.0M	
	SDitH-gf251-L1-hyp	3.05	$7.9\mathrm{M}$	8.17	21.2M	7.83	20.3M	
	SDitH-gf251-L3-hyp	3.67	$9.5\mathrm{M}$	17.98	46.6M	17.08	$44.3 \mathrm{M}$	
	SDitH-gf251-L5-hyp	6.36	$16.5\mathrm{M}$	32.73	84.8M	31.26	81.0M	
		-		-				

3 variant based in MPCitH with threshold secret sharing

MPC in the Head with Threshold Secret Sharing (a.k.a. TCitH)

$[[x]] = ([[x]]_1, \dots, [[x]]_N)$

• <u>Generate</u>

- Let $(r_1, \ldots, r_r) \leftarrow \$$
- Let P the polynomial of coefficients $(x, r_1, ..., r_\ell)$ $\begin{cases} \llbracket x \rrbracket_1 = P(f_1) \\ \vdots \\ \llbracket x \rrbracket_N = P(f_N) \end{cases} \text{ with } f_1, \dots, f_N \in \mathbb{F} \text{ distinct field elements}$

$[[x]] = ([[x]]_1, \dots, [[x]]_N)$

• <u>Generate</u>

- Let $(r_1, \ldots, r_r) \leftarrow \$$
- Let P the polynomial of coefficients $(x, r_1, ..., r_\ell)$ $\begin{cases} \llbracket x \rrbracket_1 = P(f_1) \\ \vdots \\ \llbracket x \rrbracket_N = P(f_N) \end{cases} \text{ with } f_1, \dots, f_N \in \mathbb{F} \text{ distinct field elements}$
- Reconstruct
 - Interpolate P from $\llbracket x \rrbracket_1, \dots, \llbracket x \rrbracket_N$

• x = P(0)

• $(\ell + 1, N)$ -threshold linear secret sharing scheme (LSSS)

• Linearity: [x] + [y] = [x + y]

- $(\ell + 1, N)$ -threshold linear secret sharing scheme (LSSS)
 - Linearity: [x] + [y] = [x + y]
 - Any set of ℓ shares is random and independent of x
 - Any set of $\ell + 1$ shares \rightarrow coefficients $(x, r_1, \dots, r_\ell) \rightarrow$ all the shares

- $(\ell + 1, N)$ -threshold linear secret sharing scheme (LSSS)
 - Linearity: [x] + [y] = [x + y]
 - Any set of ℓ shares is random and independent of x
 - Any set of $\ell + 1$ shares \rightarrow coefficients $(x, r_1, \dots, r_\ell) \rightarrow$ all the shares
- $[x] = ([x]_1, ..., [x]_N)$ is a **Reed-Solomon codeword** of $(x, r_1, ..., r_r)$

- [FR23] Feneuil, Rivain. "Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head" (Asiacrypt 2023)
- ZK property \Rightarrow only open ℓ parties

 - Prover opens $\{\llbracket x \rrbracket_i, \rho_i\}_{i \in I}$

Generate and commit shares $\llbracket x \rrbracket = (\llbracket x \rrbracket_1, \dots, \llbracket x \rrbracket_N)$

Run MPC in their head (2)

Open parties in I $(\mathbf{4})$

<u>Prover</u>

<u>Verifier</u>

Threshold LSSS \Rightarrow cannot generate shares from seeds $[\alpha]$ is an RS codeword $\Rightarrow \ell + 1$ shares fully determine the sharing Chose random set of parties $I \subseteq \{1, ..., N\}, \text{ s.t. } |I| = \ell$

(5) Check $\forall i \in I$ - Commitments $\operatorname{Com}^{\rho_i}(\llbracket x \rrbracket_i)$ - MPC computation $\llbracket \alpha \rrbracket_i = \varphi(\llbracket x \rrbracket_i)$ Check $g(y, \alpha) = Accept$

MPCitH with threshold LSSS (a.k.a TCitH)

Generate and commit shares $[[x]] = ([[x]]_1, \dots, [[x]]_N)$

(2) Run MPC in their head

• One would expect:

$P[\text{cheat detected}] = \frac{\ell}{N} \Rightarrow \text{Soundness error} = 1 - \frac{\ell}{N}$

• One would expect:

• One would expect:

- But the verifier also check broadcast sharings $[[\alpha]]$
 - must be valid Shamir's secret sharings
 - i.e. valid Reed-Solomon codewords
 - \Rightarrow limits the cheating possibilities

• One would expect:

$$P[\text{cheat detected}] = \frac{\ell}{N} \quad \Rightarrow$$

- But the verifier also check broadcast sharings $[[\alpha]]$
 - must be valid Shamir's secret sharings
 - i.e. valid Reed-Solomon codewords

 \Rightarrow limits the cheating possibilities

• We actually have:

Soundness err

$$\operatorname{vor} = \frac{1}{\binom{N}{\ell}}$$

One would expect:

$$P[\text{cheat detected}] = \frac{\ell}{N} \quad \Rightarrow$$

- But the verifier also check broadcast sharings $[\![\alpha]\!]$
 - must be valid Shamir's secret sharings
 - i.e. valid Reed-Solomon codewords

 \Rightarrow limits the cheating possibilities

• We actually have:

Soundness error =

• One would expect:

$$P[\text{cheat detected}] = \frac{\ell}{N} \quad \Rightarrow$$

- But the verifier also check broadcast sharings $[[\alpha]]$
 - must be valid Shamir's secret sharings
 - i.e. valid Reed-Solomon codewords

 \Rightarrow limits the cheating possibilities

• We actually have:

Soundness error =

But the share have been to the state of the

Prover can commit invalid sharings

- Let $\llbracket x \rrbracket^{(J)} = \text{sharing interpolating } \left(\llbracket x \rrbracket_i \right)_{i \in J}$
- Many different $[[x]]^{(J)} \Rightarrow$ many possible false positives

• Prover can commit invalid sharings • Let $\llbracket x \rrbracket^{(J)} =$ sharing interpolating $\left(\llbracket x \rrbracket_i \right)_{i \in J}$

- Many different $[[x]]^{(J)} \Rightarrow$ many possible false positives
- "Degree-enforcing commitment scheme"

- Verifier \rightarrow Prover : random $\{\gamma_i\}$
- Prover \rightarrow Verifier : $\llbracket \xi \rrbracket = \sum_{j} \gamma_{i} \cdot \llbracket x_{j} \rrbracket$
- Before MPC computation

• Prover can commit invalid sharings • Let $\llbracket x \rrbracket^{(J)} =$ sharing interpolating $(\llbracket x \rrbracket_i)_{i \in J}$

- Many different $[[x]]^{(J)} \Rightarrow$ many possible false positives
- "Degree-enforcing commitment scheme"

- Verifier \rightarrow Prover : random { γ
- Prover \rightarrow Verifier : $\llbracket \xi \rrbracket = \Sigma_i \gamma_i$
- Before MPC computation

$$\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \end{array} \xrightarrow{\left\{ \begin{array}{c} 1 \\ & \\ & \\ \\ & \\ \end{array} \right\}} \longrightarrow \left\{ \begin{array}{c} 1 \\ & \\ & \\ & \\ & \\ \\ & \\ \end{array} \right\} + p$$

	MP
	+ seed + hypercub
Prover runtime	Party emulation Symmetric cry

 $\ell = 1 \Rightarrow$ Similar soundness: $\frac{1}{N} + p$

	MPCitH + seed trees + hypercube [AGHHJY23]	$\begin{array}{l} \textbf{TCitH} \\ \ell = 1 \end{array}$	
Prover runtime	Party emulations: log N +1 Symmetric crypto: O(N)	Party emulations: 2 Symmetric crypto: O(N)	
Verifier runtime	Party emulations: log N Symmetric crypto: O(N)	Party emulations: 1 Symmetric crypto: O(log N)	

 $\ell = 1 \Rightarrow$ Similar soundness: $\frac{1}{N} + p$

	MPCitH + seed trees + hypercube [AGHHJY23]	$\begin{array}{l} \textbf{TCitH} \\ \boldsymbol{\ell} = 1 \end{array}$	
Prover runtime	Party emulations: log N +1 Symmetric crypto: O(N)	Party emulations: 2 Symmetric crypto: O(N)	
Verifier runtime	Party emulations: log N Symmetric crypto: O(N)	Party emulations: 1 Symmetric crypto: O(log N)	
Size of tree	128-bit security: ~2KB 256-bit security: ~8KB	128-bit security: ~4KB 256-bit security: ~16KB	

 $\ell = 1 \Rightarrow$ Similar soundness: $\frac{1}{N} + p$

	MPCitH + seed trees + hypercube [AGHHJY23]	$\begin{array}{l} \textbf{TCitH} \\ \boldsymbol{\ell} = 1 \end{array}$	
Prover runtime	Party emulations: log N +1 Symmetric crypto: O(N)	Party emulations: 2 Symmetric crypto: O(N)	
Verifier runtime	Party emulations: log N Symmetric crypto: O(N)	Party emulations: 1 Symmetric crypto: O(log N)	
Size of tree	128-bit security: ~2KB 256-bit security: ~8KB	128-bit security: ~4KB 256-bit security: ~16KB	
Number of parties		$N \leq \mathbb{F} $	

 $\ell = 1 \Rightarrow$ Similar soundness: $\frac{1}{N} + p$

	MPCitH + seed trees + hypercube [AGHHJY23]	$\begin{array}{l} \mathbf{TCitH} \\ \mathscr{C} = 1 \end{array}$	
Prover runtime	Party emulations: log N +1 Symmetric crypto: O(N)	Party emulations: 2 Symmetric crypto: O(N)	
Verifier runtime	Party emulations: log N Symmetric crypto: O(N)	Party emulations: 1 Symmetric crypto: O(log N)	
Size of tree	128-bit security: ~2KB Gettingsridrof thése limi	128-bit security: ~4KB tatións security: ~16KB	
Number of parties	\rightarrow TCitH with GGM t	$\operatorname{ree}_{N \leq \mathbb{F} }$	

 $\ell = 1 \Rightarrow$ Similar soundness: $\frac{1}{N} + p$

<u>Step 1</u>: Generate a replicated secret sharing of *x* [ISN89]

<u>Step 1</u>: Generate a replicated secret sharing of *x* [ISN89]

<u>Step 1</u>: Generate a replicated secret sharing of *x* [ISN89]

<u>Step 2</u>: Convert it into a Shamir's secret sharing [CDI05]

Let
$$P(X) = \Delta_x + \sum_j r_j P_j(X)$$

with $P_j(X) = 1 - (1/e_j) \cdot X$

<u>Step 1</u>: Generate a replicated secret sharing of *x* [ISN89]

<u>Step 2</u>: Convert it into a Shamir's secret sharing [CDI05]

Let
$$P(X) = \Delta_x + \sum_j r_j P_j(X)$$

with $P_j(X) = 1 - (1/e_j) \cdot X$

 $[[x]] = (P(e_1), ..., P(e_N))$ is a valid Shamir's secret sharing of x

<u>Step 1</u>: Generate a replicated secret sharing of *x* [ISN89]

<u>Step 2</u>: Convert it into a Shamir's secret sharing [CDI05]

Let
$$P(X) = \Delta_x + \sum_j r_j P_j(X)$$

with $P_j(X) = 1 - (1/e_j) \cdot X$

 $[[x]] = (P(e_1), ..., P(e_N))$ is a valid Shamir's secret sharing of x

> *Party i can compute* $\llbracket x \rrbracket_i = \sum r_j P_j(e_i)$ j≠i (since $P_i(e_i) = 0$)

<u>Step 1</u>: Generate a replicated secret sharing of *x* [ISN89]

<u>Step 2</u>: Convert it into a Shamir's secret sharing [CDI05]

Let
$$P(X) = \Delta_x + \sum_j r_j P_j(X)$$

with $P_j(X) = 1 - (1/e_j) \cdot X$

 $[[x]] = (P(e_1), ..., P(e_N))$ is a valid Shamir's secret sharing of x

> *Party i can compute* $\llbracket x \rrbracket_i = \sum r_j P_j(e_i)$ j≠i (since $P_i(e_i) = 0$)

PO 1400 PATATION FOR MELLEN ANTER 1400 PATATION AND THE MELLEN

X Can be adapted to $\ell > 1$

Good soundness (only valid sharings)

X Can be adapted to $\ell > 1$

Good soundness (only valid sharings)

• Shamir's secret sharing satisfies: $\llbracket x \rrbracket^{(d)} \cdot \llbracket y \rrbracket^{(d)} = \llbracket x \cdot y \rrbracket^{(2d)}$

where he are a service and the service of the servi

- Shamir's secret sharing satisfies:
 - $[x]^{(d)} \cdot [y]^{(d)} = [x \cdot y]^{(2d)}$
- Simple protocol to verify polynomial constraints
 - w valid $\Leftrightarrow f_1(w) = 0, \dots, f_m(w) = 0$

- Shamir's secret sharing satisfies:
- Simple protocol to verify polynomial constraints
 - w valid $\Leftrightarrow f_1(w) = 0, \dots, f_m(w) = 0$
 - parties locally compute
 - $[\![\alpha]\!] = [\![\nu]\!] +$

 $[\![x]\!]^{(d)} \cdot [\![y]\!]^{(d)} = [\![x \cdot y]\!]^{(2d)}$

$$\sum_{j=1}^{m} \gamma_j \cdot f_j(\llbracket w \rrbracket)$$

- Shamir's secret sharing satisfies:
- Simple protocol to verify polynomial constraints
 - w valid $\Leftrightarrow f_1(w) = 0, \dots, f_m(w) = 0$
 - parties locally compute

 $\llbracket x \rrbracket^{(d)} \cdot \llbracket y \rrbracket^{(d)} = \llbracket x \cdot y \rrbracket^{(2d)}$

- Shamir's secret sharing satisfies:
 - $[x]^{(d)} \cdot [y]^{(d)} = [x \cdot y]^{(2d)}$
- Simple protocol to verify polynomial constraints
 - w valid $\Leftrightarrow f_1(w) = 0, \dots, f_m(w) = 0$
 - parties locally compute

- Shamir's secret sharing satisfies:
 - $[x]^{(d)} \cdot [y]^{(d)} = [x \cdot y]^{(2d)}$
- Simple protocol to verify polynomial constraints
 - w valid $\Leftrightarrow f_1(w) = 0, \dots, f_m(w) = 0$
 - parties locally compute

check $\alpha = 0$ pre-committedfalse positive proba $1/|\mathbb{F}|$ sharing of 0

- Shamir's secret sharing satisfies:
 - $[x]^{(d)} \cdot [y]^{(d)} = [x \cdot y]^{(2d)}$
- Simple protocol to verify polynomial constraints
 - w valid $\Leftrightarrow f_1(w) = 0, \dots, f_m(w) = 0$
 - parties locally compute

check $\alpha = 0$ pre-committed sharing of 0 false positive proba 1/|F|

Soundness error

randomness from the verifier

- Shamir's secret sharing satisfies:
 - $\llbracket x \rrbracket^{(d)} \cdot \llbracket y \rrbracket^{(d)} = \llbracket x \cdot y \rrbracket^{(2d)}$
- Simple protocol to verify polynomial constraints
 - w valid $\Leftrightarrow f_1(w) = 0, \dots, f_m(w) = 0$
 - parties locally compute

check $\alpha = 0$ pre-committed sharing of 0 false positive proba 1/|F|

Soundness error

randomness from the verifier

Signature from MQ and TCitH

$$x^T A_1 x + b_1^T x$$

$$x^T A_m x + b_m^T x$$

Checking a MQ instance = checking *m* quadratic constraints on the secret *x*

We can directly apply the previous protocol

 $|sig| \approx 3 \text{ kB}$

Shorter Signatures from TCitH-GGM

	Original Size	Our Variant	Saving
Biscuit	4758 B	4 048 B	-15 %
MIRA	5 640 B	5 340 B	-5 %
MiRitH-la	5 665 B	4 694 B	-17 %
MiRitH-Ib	6 298 B	5 245 B	-17 %
MQOM-31	6 328 B	4 027 B	-37 %
MQOM-251	6 575 B	4 257 B	-35 %
RYDE	5 956 B	5 281 B	-11 %
SDitH	8 241 B	7 335 B	-27 %
MQ over GF(4)	8 609 B	3 858 B	-55 %
SD over GF(2)	11 160 B	7 354 B	-34 %
SD over GF(2)	12 066 B	6 974 B	-42 %

*
$$N = 256$$

Shorter Signatures from TCitH-GGM

	Original S
Biscuit	4758
MIRA	5 640
MiRitH-la	5 665
MiRitH-Ib	6 298
MQOM-31	6 328
MQOM-251	6 575
RYDE	5 956
SDitH	8 241
MQ over GF(4)	8 609
SD over GF(2)	11 160
SD over GF(2)	12 066

* N = 256 * N = 2048

Size **Our Variant** Saving 3 431 B В В 4 314 B В 3 873 B В 4 250 B В 3 567 B В 3 418 B В 4 274 B В 5 673 B В 3 301 B В 7 354 B -34 % -42 % В 6 974 B

Shorter Signatures from TCitH-GGM

<u>Two very recent works :</u>

- https://ia.cr/2024/490
 - General techniques to reduce the size of GGM trees: tree merging & proof of work
 - Apply to TCitH-GGM (gain of ~500 B at 128-bit security)
- [BFGNR24] Bidoux, Feneuil, Gaborit, Neveu, Rivain. Dual Support Decomposition in the Head: Shorter Signatures from Rank SD and MinRank. https://ia.cr/2024/541
 - New MPC protocols for TCitH / VOLEitH signatures based on MinRank & Rank SD

• [BBMO+24] Baum, Beullens, Mukherjee, Orsini, Ramacher, Rechberger, Roy, Scholl. One Tree to Rule Them All: Optimizing GGM Trees and OWFs for Post-Quantum Signatures.

international deservation of the second and a large

• MPC-in-the-Head

- Versatile approach to build ZK proofs and (PQ) signatures
- Drastic improvements since 2017 (in particular thanks to **GGM trees** [KKW18])
- Applicable to any one-way function → conservative / unstructured PQ assumptions
- Instrumental to advanced signatures / ZK proofs \rightarrow e.g. current shortest PQ ring signatures [FR23b]

MPC-in-the-Head

- Versatile approach to build ZK proofs and (PQ) signatures
- Drastic improvements since 2017 (in particular thanks to **GGM trees** [KKW18])
- Applicable to any one-way function → conservative / unstructured PQ assumptions
- Instrumental to advanced signatures / ZK proofs \rightarrow e.g. current shortest PQ ring signatures [FR23b]
- State of the art still moving!
 - New frameworks: VOLEitH [BBDG+23], TCitH [FR23b]
 - Compression of GGM trees [BBMO+24]
 - Improvements for most MPCitH-based NIST submissions

MPC-in-the-Head

- Versatile approach to build ZK proofs and (PQ) signatures
- Drastic improvements since 2017 (in particular thanks to **GGM trees** [KKW18])
- Applicable to any one-way function → conservative / unstructured PQ assumptions
- Instrumental to advanced signatures / ZK proofs
- State of the art still moving!
 - New frameworks: VOLEitH [BBDG+23], TCitH [FR23b]
 - Compression of GGM trees [BBMO+24]
 - Improvements for most MPCitH-based NIST submissions

What next?

You find out!

 \rightarrow e.g. current shortest PQ ring signatures [FR23b]