Introduction to Zero-Knowledge Proofs and the MPC-in-the-Head Paradigm

Matthieu Rivain
PQ-TLS Summer School
Jun 18, 2024, Anglet

Roadmap

- Today:
- Quick Intro
- Introduction to Zero-Knowledge Proofs
- Introduction to the MPC-in-the-Head Paradigm
- Tomorrow:
- Modern MPC-in-the-Head Techniques
- Specific Post-Quantum Signatures

Roadmap

- Today:
- Quick Intro
- Introduction to Zero-Knowledge Proofs
- Introduction to the MPC-in-the-Head Paradigm
- Tomorrow:
- Modern MPC-in-the-Head Techniques
- Specific Post-Quantum Signatures

Time to wake up!

Quick Intro to MPC in the Head

One-way function

$$
F: x \mapsto y
$$

E.g. AES, MQ system,

Syndrome decoding

One-way function

$$
F: x \mapsto y
$$

E.g. AES, MO system, Syndrome decoding

Multiparty computation (MPC)

One-way function

$$
F: x \mapsto y
$$

E.g. AES, MO system, Syndrome decoding

Multiparty computation (MPC)

Zero-knowledge proof

One-way function

$$
F: x \mapsto y
$$

E.g. AES, MQ system, Syndrome decoding

Multiparty computation (MPC)

Zero-knowledge proof

Signature scheme

signature

One-way function

$$
F: x \mapsto y
$$

E.g. AES, MO system, Syndrome decoding

signature

Multiparty computation (MPC)

MPC in the Head

Zero-knowledge proof

Brief History

- 2007: [IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai:
"Zero-knowledge from secure multiparty computation" (STOC 2007)
- 2016: [GMO16] "ZKBoo: Faster Zero-Knowledge for Boolean Circuits" (Usenix 2016)
- 2017: Picnic submission to NIST
- MPCitH applied to LowMC
- 2017 \rightarrow today: Active area of research
- Drastic improvements
- Application to various PQ problems
- 2023: NIST call for additional PO signatures
- 7 (to 9) MPCitH schemes / 40 round-1 candidates

Some Numbers

	Assumption	$\|\mathbf{p k}\|$	\mid sig\|	$\|\mathbf{p k}\|+\|\mathbf{s i g}\|$	Sign	Verify
RSA	Factorisation	272 B	256 B	528 B	27 Mc	45 kc
EdDSA	Discret Log	32 B	64 B	96 B	42 kc	130 kc
Dilithium	Structured Lattice	1312 B	2420 B	3732 B	333 kc	118 kc
Falcon	Structured Lattice	897 B	666 B	1563 B	1.0 Mc	81 kc
SPHINCS $^{+}$	Hash	32 B	7856 B	7888 B	4682 Mc	4.7 Mc
			17088 B	17120 B	239 Mc	12.9 Mc

Some Numbers

	Assumption	$\|\mathbf{p k}\|$	\mid sig\|	$\|\mathbf{p k}\|+\|\mathbf{s i g}\|$	Sign	Verify
RSA	Factorisation	272 B	256 B	528 B	27 Mc	45 kc
EdDSA	Discret Log	32 B	64 B	96 B	42 kc	130 kc
Dilithium	Structured Lattice	1312 B	2420 B	3732 B	333 kc	118 kc
Falcon	Structured Lattice	897 B	666 B	1563 B	1.0 Mc	81 kc
SPHINCS $^{+}$	Hash	32 B	7856 B	7888 B	4682 Mc	4.7 Mc
			17088 B	17120 B	239 Mc	12.9 Mc

| MPCitH | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Conservative /
 unstructured
 assumptions | | | | |

Some Numbers

	Assumption	$\|\mathbf{p k}\|$	\mid sig\|	$\|\mathbf{p k}\|+\|\mathbf{s i g}\|$	Sign	Verify
RSA	Factorisation	272 B	256 B	528 B	27 Mc	45 kc
EdDSA	Discret Log	32 B	64 B	96 B	42 kc	130 kc
Dilithium	Structured Lattice	1312 B	2420 B	3732 B	333 kc	118 kc
Falcon	Structured Lattice	897 B	666 B	1563 B	1.0 Mc	81 kc
SPHINCS $^{+}$	Hash	32 B	7856 B	7888 B	4682 Mc	4.7 Mc
			17088 B	17120 B	239 Mc	12.9 Mc

| | | | | | |
| :--- | :---: | :---: | :--- | :--- | :--- | :--- |
| MPCitH | Conservative /
 unstructured
 assumptions | Small:
 $32 \mathrm{~B}-$
 $\sim 100 \mathrm{~B}$ | | | |

Some Numbers

	Assumption	$\|\mathbf{p k}\|$	\mid sig\|	$\|\mathbf{p k}\|+\|\mathbf{s i g}\|$	Sign	Verify
RSA	Factorisation	272 B	256 B	528 B	27 Mc	45 kc
EdDSA	Discret Log	32 B	64 B	96 B	42 kc	130 kc
Dilithium	Structured Lattice	1312 B	2420 B	3732 B	333 kc	118 kc
Falcon	Structured Lattice	897 B	666 B	1563 B	1.0 Mc	81 kc
SPHINCS $^{+}$	Hash	32 B	7856 B	7888 B	4682 Mc	4.7 Mc
			17088 B	17120 B	239 Mc	12.9 Mc

| | | | (typically)
 $5-10 \mathrm{kB}$ | | |
| :--- | :---: | :---: | :---: | :--- | :--- | :--- |
| MPCitH | Conservative /
 unstructured
 assumptions | Small:
 $32 \mathrm{~B}-$
 $\sim 100 \mathrm{~B}$ | | | |

Some Numbers

	Assumption	$\|\mathbf{p k}\|$	\mid sig\|	$\|\mathbf{p k}\|+\|\mathbf{s i g}\|$	Sign	Verify
RSA	Factorisation	272 B	256 B	528 B	27 Mc	45 kc
EdDSA	Discret Log	32 B	64 B	96 B	42 kc	130 kc
Dilithium	Structured Lattice	1312 B	2420 B	3732 B	333 kc	118 kc
Falcon	Structured Lattice	897 B	666 B	1563 B	1.0 Mc	81 kc
SPHINCS $^{+}$	Hash	32 B	7856 B	7888 B	4682 Mc	4.7 Mc
			17088 B	17120 B	239 Mc	12.9 Mc

MPCitH	Conservative / unstructured assumptions	$\begin{aligned} & \text { Small: } \\ & 32 \mathrm{~B}- \\ & \sim 100 \mathrm{~B} \end{aligned}$	(typically) 5-10 kB (recently) AES: $4-6 \mathrm{kB}$ MO: $2.5-3 \mathrm{kB}$ Rank: ~3 kB	

Some Numbers

	Assumption	$\|\mathbf{p k}\|$	\mid sig\|	$\|\mathbf{p k}\|+\|\mathbf{s i g}\|$	Sign	Verify
RSA	Factorisation	272 B	256 B	528 B	27 Mc	45 kc
EdDSA	Discret Log	32 B	64 B	96 B	42 kc	130 kc
Dilithium	Structured Lattice	1312 B	2420 B	3732 B	333 kc	118 kc
Falcon	Structured Lattice	897 B	666 B	1563 B	1.0 Mc	81 kc
SPHINCS $^{+}$	Hash	32 B	7856 B	7888 B	4682 Mc	4.7 Mc
			17088 B	17120 B	239 Mc	12.9 Mc

| MPCitH | Conservative / unstructured assumptions | $\begin{aligned} & \text { Small: } \\ & 32 \mathrm{~B}- \\ & \sim 100 \mathrm{~B} \end{aligned}$ | (typically) 5-10 kB (recently) AES: $4-6 \mathrm{kB}$ MO: $2.5-3 \mathrm{kB}$ Rank: ~3 kB | ~ same as \|sig| |
| :---: | :---: | :---: | :---: | :---: |

Some Numbers

	Assumption	$\|\mathbf{p k}\|$	\mid sig\|	$\|\mathbf{p k}\|+\|\mathbf{s i g}\|$	Sign	Verify
RSA	Factorisation	272 B	256 B	528 B	27 Mc	45 kc
EdDSA	Discret Log	32 B	64 B	96 B	42 kc	130 kc
Dilithium	Structured Lattice	1312 B	2420 B	3732 B	333 kc	118 kc
Falcon	Structured Lattice	897 B	666 B	1563 B	1.0 Mc	81 kc
SPHINCS $^{+}$	Hash	32 B	7856 B	7888 B	4682 Mc	4.7 Mc
			17088 B	17120 B	239 Mc	12.9 Mc

| MPCitH | Conservative / unstructured assumptions | $\begin{gathered} \text { Small: } \\ 32 \text { B - } \\ \sim 100 \mathrm{~B} \end{gathered}$ | (typically) 5-10 kB (recently) AES: $4-6 \mathrm{kB}$ MO: $2.5-3 \mathrm{kB}$ Rank: ~3 kB | ~ same as \|sig| | (typically)
 ~10-50
 Mc | (typically) same as sign |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Introduction to

Zero-Knowledge Proofs

Interactive Proof

Interactive Proof

Interactive Proof

Completeness

$$
P[\nabla \mid \exists x \text { s.t. } C(x)=y]=1
$$

Interactive Proof

Completeness

$P[\nabla \mid \exists x$ s.t. $C(x)=y]=1$

Soundness

$P[\nabla \mid \nexists x$ s.t. $C(x)=y] \leq \varepsilon$

Interactive Proof

Completeness

$P[\nabla \mid \exists x$ s.t. $C(x)=y]=1$

Soundness

$P[\nabla \mid \nexists x$ s.t. $C(x)=y] \leq \varepsilon$

Interactive Proof

Proof of Knowledge

Proof of Knowledge

Proof of Knowledge

Knowledge Soundness (informal)

$P[\nabla \mid$ doesn't know x s.t. $C(x)=y] \leq \varepsilon$

Knowledge Soundness

Knowledge Soundness

Knowledge Soundness

Knowledge Soundness

If \exists Prover s.t. $P[$ Verifier $\nabla]>\varepsilon$ then \exists Extractor which recovers x

Contraposition

Question 1

Question 1

Question 1

Useful Proof of Knowledge

Useful Proof of Knowledge

Zero Knowledge (informal)

learns nothing about x

Useful Proof of Knowledge

Zero Knowledge (informal)
learns nothing about x

Succinctness (informal)
\mid 国 $|\ll| x|,|C|,|y|$
verif. time $\ll|x|,|C|,|y|$

Zero Knowledge Proof

Zero Knowledge Proof

Zero Knowledge Proof

Zero Knowledge Proof

Back to Knowledge Soundness

Knowledge Soundness

If \exists Prover s.t. $P[$ Verifier $\nabla]>\varepsilon$ then \exists Extractor which recovers x

Zero Knowledge

\exists Simulator producing genuine transcripts

Back to Knowledge Soundness

Knowledge Soundness

If \exists Prover s.t. $P[$ Verifier $\nabla]>\varepsilon$ then \exists Extractor which recovers x

Zero Knowledge

\exists Simulator producing genuine transcripts

Question 2

Question 2

Q. Why this doesn't work?

Question 2

Q. Why this doesn't work?
A. Simulator only outputs

Prover is stateful, it can be copied and forked.

Extraction

Extraction

(1) Start interaction

Extraction

(1) Start interaction

(2) Copy the Prover

Extraction

(1) Start interaction

(2) Copy the Prover

(3) Continue with \neq questions

Extraction

(1) Start interaction

\downarrow
(3) Continue with \neq questions

\downarrow
(2) Copy the Prover
(4) Recover x from
(c, q_{1}, a_{1}) and (c, q_{2}, a_{2})
墾要

Extraction

(1) Start interaction

\downarrow

(2) Copy the Prover
(3) Continue with \neq questions

(4) Recover x from
(c, q_{1}, a_{1}) and (c, q_{2}, a_{2})

Known as
(2-)special soundness

1

(Pre-Quantum) Example: Schnorr Protocol

Check $g^{a}=y^{q} \cdot c$

Question 3

Question 3

x

$$
\begin{aligned}
& k \leftarrow \$ \\
& c=g^{k}
\end{aligned}
$$

$a=q x+k$

Verifier

$$
y=g^{x}
$$

Q. Why is Schnorr protocol zero-knowledge?

Answer

Check $g^{a}=y^{q} \cdot c$

Answer

Answer

Simulator
 $q \leftarrow \$$
 $a \leftarrow \$$
 $c=g^{a} / y^{q}$

(c,a,q)

$a=q x+k$

Verifier

$$
y=g^{x}
$$

Check $g^{a}=y^{q} \cdot c$

Knowing the question (a.k.a. challenge) before the commitment enables perfect simulation.

Question 4

Question 4

x

$$
c=g^{k}
$$

$$
a=q x+k
$$

a

Verifier

$$
y=g^{x}
$$

Q. Why is Schnorr protocol knowledge sound?

Answer

Answer

$$
\begin{aligned}
& \text { Extractor } \\
& a_{1}=\underset{q_{1} x+k}{\rightarrow} \\
& x=\left(a_{1}-a_{2}\right) /\left(q_{1}-q_{2}\right)
\end{aligned}
$$

2-Special Knowledge Soundness

Answer

2-Special Knowledge Soundness

For any c, if (c, q, a) (with same c), then Extractor gets x.

Answer

Extractor

$a_{1}=q_{1} x+k$
$a_{2}=q_{2} x+k$

$$
x=\left(a_{1}-a_{2}\right) /\left(q_{1}-q_{2}\right)
$$

2-Special Knowledge Soundness

For any c, if

can produce $2 \neq$ transcripts (c, q, a) (with same c), then Extractor gets x.
\Rightarrow If dex don't know x, they can produce at most one such transcript.

Answer

2-Special Knowledge Soundness

For any c, if

can produce $2 \neq$ transcripts (c, q, a) (with same c), then Extractor gets x.
\Rightarrow If duce don't know x, they can produce at most one such transcript.

$$
\begin{aligned}
\Rightarrow \text { Soundness error } & =P[\text { "getting the right } q "] \\
& =2^{-|q|}
\end{aligned}
$$

Soundness Amplification

$$
\longrightarrow \quad \varepsilon=P[\nabla]
$$

! Might be non-negligible!

Soundness Amplification

Parallel repetition

Soundness Amplification

Non-Interactive Proof

Non-Interactive Proof

Fiat-Shamir Transform

Fiat-Shamir Transform

checks π by recomputing the hashs instead of randomly picking the q_{i} 's

Fiat-Shamir Transform

Hash(\cdot) behaves as a random function.
Security in the Random Oracle Model (ROM).
checks π by recomputing the hashs instead of randomly picking the q_{i} 's

Question 5

Question 5

Sequential repetition

Parallel
repetition
Q. With Fiat-Shamir, which one is better and why?

Answer

ZK PoK + Fiat-Shamir = Signature

Signature Security

- Security in the Random Oracle Model
- EUF-CMA adversary \Rightarrow algorithm to recover x

Signature Security

- Security in the Random Oracle Model
- EUF-CMA adversary \Rightarrow algorithm to recover x
- Zero Knowledge \Rightarrow signatures do not leak information on x
- ZK Simulator \rightarrow Signature oracle in the EUF-CMA game

Signature Security

- Security in the Random Oracle Model
- EUF-CMA adversary \Rightarrow algorithm to recover x
- Zero Knowledge \Rightarrow signatures do not leak information on x
- ZK Simulator \rightarrow Signature oracle in the EUF-CMA game
- Knowledge Soundness $\Rightarrow x$ can be extracted from an EUF-CMA adversary
- Extractor \rightarrow Recovers x from forged signatures (1, 2, a few)

Introduction to the MPC-in-the-Head Paradigm

Secret Sharing

$$
\llbracket x \|=\left(\llbracket x \|_{1}, \ldots, \llbracket x \rrbracket_{N}\right) \in \mathbb{F}^{N}
$$

Secret Sharing

$$
\llbracket x \rrbracket=\left(\llbracket x \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}\right) \in \mathbb{F}^{N}
$$

- Random generation: $\llbracket x \rrbracket \leftarrow \operatorname{Generate}(x, \$)$
- Deterministic reconstruction: $x=\operatorname{Reconstruct(}(\llbracket x \rrbracket)$

Secret Sharing

$$
\llbracket x \rrbracket=\left(\llbracket x \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}\right) \in \mathbb{F}^{N}
$$

- Random generation: $\llbracket x \rrbracket \leftarrow \operatorname{Generate}(x, \$)$
- Deterministic reconstruction: $x=\operatorname{Reconstruct(}(\llbracket x \rrbracket)$
- Privacy: $\llbracket x \rrbracket$ is ℓ-private
\Leftrightarrow any set of ℓ shares $\left\{\llbracket x \rrbracket_{i}\right\}$ is statistically independent of x

Secret Sharing

$$
\llbracket x \rrbracket=\left(\llbracket x \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}\right) \quad \in \mathbb{F}^{N}
$$

- Random generation: $\llbracket x \rrbracket \leftarrow \operatorname{Generate}(x, \$)$
- Deterministic reconstruction: $x=\operatorname{Reconstruct(}(\llbracket x \rrbracket)$
- Privacy: $\llbracket x \rrbracket$ is ℓ-private
\Leftrightarrow any set of ℓ shares $\left\{\llbracket x \rrbracket_{i}\right\}$ is statistically independent of x
\Leftrightarrow any set of ℓ shares $\left\{\llbracket x \rrbracket_{i}\right\}$ can be perfectly simulated w/o x

Secret Sharing

Example: additive secret sharing

- Reconstruction:

$$
x=\sum_{i=1}^{N} \llbracket x \rrbracket_{i}
$$

- Generation:

$$
\llbracket x \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N-1} \leftarrow \$, \quad \llbracket x \rrbracket_{N}=x-\sum_{i=1}^{N-1} \llbracket x \rrbracket_{i}
$$

Question 6

Q. Additive sharing is ℓ-private for which ℓ ?

Question 6

Q. Additive sharing is ℓ-private for which ℓ ?
A. Additive sharing is $(N-1)$-private.

Commitment Scheme

Commitment Scheme

Commitment Scheme

- Binding: no way x can be opened to $x^{\prime} \neq x$

Commitment Scheme

- Binding: no way x can be opened to $x^{\prime} \neq x$
- Hiding: x does not reveal information about x (without $=0$)

Question 7

Question 7

Q. How to construct a simple binding and hiding commitment scheme using symmetric cryptography?

Question 7

Q. How to construct a simple binding and hiding commitment scheme using symmetric cryptography?
A. Hash commitment:

$$
x]:=\operatorname{Hash}(x \| \rho) \text { with } \rho \leftarrow \$ \quad \Longrightarrow:=(x, \rho)
$$

Question 7

Q. How to construct a simple binding and hiding commitment scheme using symmetric cryptography?
A. Hash commitment:

- Biding by collision resistance
- Hiding in the ROM

Multiparty Computation (MPC) Protocol

- Input: the parties receive a sharing $\llbracket x \rrbracket$
- MPC: the parties jointly compute

$$
y=C(x)
$$

Multiparty Computation (MPC) Protocol

Multiparty Computation (MPC) Protocol

- Input: the parties receive a sharing $\llbracket x \rrbracket$
$\llbracket x \rrbracket_{4}$
My view \quad = my input share, my internal randomness and all the messages I receive

MPC in the Head

MPC in the Head

MPC in the Head

view

view commitment

MPC in the Head

view commitment

MPC in the Head

MPC in the Head

Question 8

Question 8

Q. This protocol is zero-knowledge if the MPC protocol is ...?

Question 8

Q. This protocol is zero-knowledge if the MPC protocol is ...?
A. 2-private.

Soundness

Soundness

Soundness

If don't know x then parties receive $\llbracket \tilde{x} \rrbracket$ with $\tilde{x} \neq x$ and $\operatorname{MPC}(\llbracket \tilde{x} \rrbracket) \neq y$.

Therefore either
(1)

for some party
(2)

for two parties

Soundness

If don't know x then parties receive $\llbracket \tilde{x} \rrbracket$ with $\tilde{x} \neq x$ and $\operatorname{MPC}(\llbracket \tilde{x} \rrbracket) \neq y$.

Therefore either
(1)

for some party
(2)

for two parties
(3)

for some party

Question 9

Question 9

Q. What is the soundness error of this protocol?

Question 9

Q. What is the soundness error of this protocol?
A. If the prover cheat on a single message the verifier detects the cheat only if the challenge is
Soundness error $=1-P[$ detection $]=1-\frac{2}{N(N-1)}$

Question 9

Challenge: parties to reveal

Response: open views

Q. What is the soundness error of this protocol?
A. If the prover cheat on a single message \longleftrightarrow the verifier detects the cheat only if the challenge is
We can do much better!
(See you tomorrow!)

MPC for Arithmetic Circuits

- Computation C composed of $(+)_{\mathbb{F}}$ and $(\times)_{\mathbb{F}}$

MPC for Arithmetic Circuits

- Computation C composed of $(+)_{\mathbb{F}}$ and $(\times)_{\mathbb{F}}$
- Additions \rightarrow local computation

$$
\llbracket x+y \rrbracket=\left(\llbracket x \rrbracket_{1}+\llbracket y \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}+\llbracket y \rrbracket_{N}\right)
$$

MPC for Arithmetic Circuits

- Computation C composed of $(+)_{\mathbb{F}}$ and $(\times)_{\mathbb{F}}$
- Additions \rightarrow local computation

$$
\llbracket x+y \rrbracket=\left(\llbracket x \rrbracket_{1}+\llbracket y \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}+\llbracket y \rrbracket_{N}\right)
$$

- Multiplications \rightarrow require communication between parties

MPC for Arithmetic Circuits

- Computation C composed of $(+)_{\mathbb{F}}$ and $(\times)_{\mathbb{F}}$
- Additions \rightarrow local computation

$$
\llbracket x+y \rrbracket=\left(\llbracket x \rrbracket_{1}+\llbracket y \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}+\llbracket y \rrbracket_{N}\right)
$$

- Multiplications \rightarrow require communication between parties
- Common technique: using multiplication triples
- Assume the parties have pre-generated/distributed random triples $\llbracket a \rrbracket$, $\llbracket b \rrbracket$, $\llbracket c \rrbracket$ such that $\llbracket c \rrbracket=\llbracket a \cdot b \rrbracket$

MPC for Arithmetic Circuits

- Multiplication of $\llbracket x \rrbracket$ and $\llbracket y \rrbracket$ using $\llbracket a \rrbracket, \llbracket b \rrbracket, \llbracket c \rrbracket$
- Let $\alpha=x+a$ and $\beta=y+b$
- We have

$$
x \cdot y=(\alpha-a)(\beta-b)=\alpha \beta-\beta a-\alpha b+a b
$$

- Giving

$$
\llbracket x y \rrbracket=\alpha \beta-\beta \llbracket a \rrbracket-\alpha \llbracket b \rrbracket+\llbracket c \rrbracket
$$

MPC for Arithmetic Circuits

- Multiplication of $\llbracket x \rrbracket$ and $\llbracket y \rrbracket$ using $\llbracket a \rrbracket, \llbracket b \rrbracket$, $\llbracket c \rrbracket$
- Let $\alpha=x+a$ and $\beta=y+b$
- We have

$$
x \cdot y=(\alpha-a)(\beta-b)=\alpha \beta-\beta a-\alpha b+a b
$$

- Giving

$$
\llbracket x y \rrbracket=\alpha \beta-\beta \llbracket a \rrbracket-\alpha \llbracket b \rrbracket+\llbracket c \rrbracket
$$

- Protocol:

1. Parties locally compute $\llbracket \alpha \rrbracket=\llbracket x \rrbracket+\llbracket a \rrbracket$ and $\llbracket \beta \rrbracket=\llbracket y \rrbracket+\llbracket b \rrbracket$
2. Parties broadcast $\llbracket \alpha \rrbracket$ and $\llbracket \beta \rrbracket$
3. Parties reconstruct α and β and compute $\llbracket x y \rrbracket$ as above

MPC for Arithmetic Circuits

- Multiplication of $\llbracket x \rrbracket$ and $\llbracket y \rrbracket$ using $\llbracket a \rrbracket, \llbracket b \rrbracket, \llbracket c \rrbracket$
- Let $\alpha=x+a$ and $\beta=y+b$
- We have

$$
x \cdot y=(\alpha-a)(\beta-b)=\alpha \beta-\beta a-\alpha b+a b
$$

Compiling this protocol
(A. with MPCitH, we get a ZK

PoK for $y=C(x)$.

- Giving

$$
\llbracket x y \rrbracket=\alpha \beta-\beta \llbracket a \rrbracket-\alpha \llbracket b \rrbracket+\llbracket c \rrbracket
$$

- Protocol:

1. Parties locally compute $\llbracket \alpha \rrbracket=\llbracket x \rrbracket+\llbracket a \rrbracket$ and $\llbracket \beta \rrbracket=\llbracket y \rrbracket+\llbracket b \rrbracket$
2. Parties broadcast $\llbracket \alpha \rrbracket$ and $\llbracket \beta \rrbracket$
3. Parties reconstruct α and β and compute $\llbracket x y \rrbracket$ as above

MPC for Arithmetic Circuits

- Multiplication of $\llbracket x \rrbracket$ and $\llbracket y \rrbracket$ using $\llbracket a \rrbracket, \llbracket b \rrbracket, \llbracket c \rrbracket$
- Let $\alpha=x+a$ and $\beta=y+b$
- We have

$$
x \cdot y=(\alpha-a)(\beta-b)=\alpha \beta-\beta a-\alpha b+a b
$$

- Giving

$$
\llbracket x y \rrbracket=\alpha \beta-\beta \llbracket a \rrbracket-\alpha \llbracket b \rrbracket+\llbracket c \rrbracket
$$

- Protocol:

1. Parties locally compute $\llbracket \alpha \rrbracket=\llbracket x \rrbracket+\llbracket a \rrbracket$ and $\llbracket \beta \rrbracket=\llbracket y \rrbracket+\llbracket b \rrbracket$
2. Parties broadcast $\llbracket \alpha \rrbracket$ and $\llbracket \beta \rrbracket$
3. Parties reconstruct α and β and compute $\llbracket x y \rrbracket$ as above
