
Introduction to Zero-Knowledge Proofs
and the MPC-in-the-Head Paradigm

Matthieu Rivain

PQ-TLS Summer School

Jun 18, 2024, Anglet

Roadmap

• Today:

‣ Quick Intro

‣ Introduction to Zero-Knowledge Proofs

‣ Introduction to the MPC-in-the-Head Paradigm

• Tomorrow:

‣ Modern MPC-in-the-Head Techniques

‣ Specific Post-Quantum Signatures

Roadmap

• Today:

‣ Quick Intro

‣ Introduction to Zero-Knowledge Proofs

‣ Introduction to the MPC-in-the-Head Paradigm

• Tomorrow:

‣ Modern MPC-in-the-Head Techniques

‣ Specific Post-Quantum Signatures

Time to wake up!

Quick Intro to
MPC in the Head

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y
Signature scheme

x
Hash

function

msg

signature

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y
Signature scheme

x
Hash

function

msg

signature

MPC in the Head

• 2007: [IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai:
“Zero-knowledge from secure multiparty computation” (STOC 2007)

• 2016: [GMO16] “ZKBoo: Faster Zero-Knowledge for Boolean Circuits” (Usenix 2016)

• 2017: Picnic submission to NIST

‣ MPCitH applied to LowMC

• 2017 today: Active area of research

‣ Drastic improvements

‣ Application to various PQ problems

• 2023: NIST call for additional PQ signatures

‣ 7 (to 9) MPCitH schemes / 40 round-1 candidates

→

Brief History

Some Numbers
Assumption

Some Numbers

MPCitH
Conservative /
unstructured
assumptions

Small:
32 B -

~ 100 B

(typically)
5-10 kB

(recently)
AES: 4-6 kB

MQ: 2.5-3 kB
Rank: ~3 kB

~ same
as |sig|

(typically)
~10-50

Mc

(typically)
same as

sign

Assumption

Some Numbers

MPCitH
Conservative /
unstructured
assumptions

Small:
32 B -

~ 100 B

(typically)
5-10 kB

(recently)
AES: 4-6 kB

MQ: 2.5-3 kB
Rank: ~3 kB

~ same
as |sig|

(typically)
~10-50

Mc

(typically)
same as

sign

Assumption

Some Numbers

MPCitH
Conservative /
unstructured
assumptions

Small:
32 B -

~ 100 B

(typically)
5-10 kB

(recently)
AES: 4-6 kB

MQ: 2.5-3 kB
Rank: ~3 kB

~ same
as |sig|

(typically)
~10-50

Mc

(typically)
same as

sign

Assumption

Some Numbers

MPCitH
Conservative /
unstructured
assumptions

Small:
32 B -

~ 100 B

(typically)
5-10 kB

(recently)
AES: 4-6 kB

MQ: 2.5-3 kB
Rank: ~3 kB

~ same
as |sig|

(typically)
~10-50

Mc

(typically)
same as

sign

Assumption

Some Numbers

MPCitH
Conservative /
unstructured
assumptions

Small:
32 B -

~ 100 B

(typically)
5-10 kB

(recently)
AES: 4-6 kB

MQ: 2.5-3 kB
Rank: ~3 kB

~ same
as |sig|

(typically)
~10-50

Mc

(typically)
same as

sign

Assumption

Some Numbers

MPCitH
Conservative /
unstructured
assumptions

Small:
32 B -

~ 100 B

(typically)
5-10 kB

(recently)
AES: 4-6 kB

MQ: 2.5-3 kB
Rank: ~3 kB

~ same
as |sig|

(typically)
~10-50

Mc

(typically)
same as

sign

Assumption

Introduction to
Zero-Knowledge Proofs

Interactive Proof

Interactive Proof

 s.t. ∃x y = C(x)

x y, C

⋮

Ok ✅ / Nok ⛔

Prover Verifier

Interactive Proof

 s.t. ∃x y = C(x)

x y, C

⋮

Ok ✅ / Nok ⛔

Prover Verifier

 P[
✅
∣ ∃ x s.t. C(x) = y] = 1

Completeness

Interactive Proof

 s.t. ∃x y = C(x)

x y, C

⋮

Ok ✅ / Nok ⛔

 P[
✅
∣ /∃ x s.t. C(x) = y] ≤ ε

Soundness

Prover Verifier

 P[
✅
∣ ∃ x s.t. C(x) = y] = 1

Completeness

Interactive Proof

 s.t. ∃x y = C(x)

x y, C

⋮

Ok ✅ / Nok ⛔

 P[
✅
∣ /∃ x s.t. C(x) = y] ≤ ε

Soundness

Prover Verifier

 P[
✅
∣ ∃ x s.t. C(x) = y] = 1

Completeness

soundness error

Interactive Proof

 s.t. ∃x y = C(x)

x y, C

⋮

Ok ✅ / Nok ⛔

 P[
✅
∣ /∃ x s.t. C(x) = y] ≤ ε

Soundness

Prover Verifier

 P[
✅
∣ ∃ x s.t. C(x) = y] = 1

Completeness
the statement

the witness

soundness error

Proof of Knowledge

Proof of Knowledge
I know

s.t.
x

y = C(x)

x y, C

⋮

Ok ✅ / Nok ⛔

Prover Verifier

Proof of Knowledge
I know

s.t.
x

y = C(x)

x y, C

⋮

Ok ✅ / Nok ⛔

Prover Verifier

 P[
✅
∣ doesn't know x s.t. C(x) = y] ≤ ε

Knowledge Soundness (informal)

Knowledge Soundness

Knowledge Soundness

y, C

⋮

Ok ✅

VerifierProver

If Prover s.t. ∃
P[Verifier

✅

] > ε

Knowledge Soundness

y, C

⋮

Ok ✅

VerifierProver

If Prover s.t. ∃
P[Verifier

✅

] > ε

x

then Extractor
which recovers

∃
x

⚙
Extractor

Knowledge Soundness

y, C

⋮

Ok ✅

VerifierProver

If Prover s.t. ∃
P[Verifier

✅

] > ε

x

then Extractor
which recovers

∃
x

If doesn’t know (we cannot extract) x x

then P[Verifier
✅

] ≤ ε

Contraposition

⚙
Extractor

Question 1

Question 1

I know s.t. k y = AESk(0)

y

⋮

Prover Verifier

❓

Question 1

I know s.t. k y = AESk(0)

y

Prover Verifier

k

Indeed, y = AESk(0)

Useful Proof of Knowledge

x y, C

Prover Verifier

Useful Proof of Knowledge

x y, C

Prover Verifier

 learns nothing about x

Zero Knowledge (informal)

Useful Proof of Knowledge

x y, C

Prover Verifier

 learns nothing about x

Zero Knowledge (informal)

|
📜
| ≪ |x | , |C | , |y |

verif. time ≪ |x | , |C | , |y |

Succinctness (informal)

📜
Transcript

Zero Knowledge Proof

Zero Knowledge Proof

x y, C

Prover Verifier

📜
Transcript

Zero Knowledge Proof

x y, C

Prover Verifier

📜
Transcript

🤖
Simulator

📜

≈

 a Simulator producing a 📜 that is
perfectly / statistically / computationally

indistinguishable from the right 📜.

∃

(Honest Verifier) Zero Knowledge

Zero Knowledge Proof

x y, C

Prover Verifier

📜
Transcript

🤖
Simulator

📜

≈

 a Simulator producing a 📜 that is
perfectly / statistically / computationally

indistinguishable from the right 📜.

∃

(Honest Verifier) Zero Knowledge

Back to Knowledge Soundness

If Prover s.t.
then Extractor which recovers

∃ P[Verifier
✅

] > ε
∃ x

x⚙
Extractor

Knowledge Soundness Zero Knowledge

📜

 Simulator producing
genuine transcripts

∃

📜

🤖
Simulator

≈

Back to Knowledge Soundness

If Prover s.t.
then Extractor which recovers

∃ P[Verifier
✅

] > ε
∃ x

x⚙
Extractor

Knowledge Soundness Zero Knowledge

📜

 Simulator producing
genuine transcripts

∃

📜

🤖
Simulator

≈

🤔 Those 2 seem somehow contradictory.

Question 2

Question 2

⚙

Extractor

🤖
Simulator

x

Q. Why this doesn’t work?

Question 2

⚙

Extractor

🤖
Simulator

x

Q. Why this doesn’t work?

A. Simulator only outputs 📜
 Prover is stateful, it can be copied and forked.

Extraction

Extraction
c

(1) Start interaction

Extraction
c

c

(1) Start interaction

(2) Copy the Prover

c

Extraction
c

c

(1) Start interaction

(2) Copy the Prover

c

c

(3) Continue with questions≠

q1
a1

c
q2
a2

Extraction
c

c

(1) Start interaction

(2) Copy the Prover

c

c

(3) Continue with questions≠

q1
a1

c
q2
a2(4) Recover from

 and
x

(c, q1, a1) (c, q2, a2)

Extraction
c

c

(1) Start interaction

(2) Copy the Prover

c

c

(3) Continue with questions≠

q1
a1

c
q2
a2(4) Recover from

 and
x

(c, q1, a1) (c, q2, a2)

Known as
(2-)special soundness

(Pre-Quantum) Example: Schnorr Protocol

x y = gx

Prover Verifier

(Pre-Quantum) Example: Schnorr Protocol

x y = gx

Prover Verifier

k ← $
c = gk

c

(Pre-Quantum) Example: Schnorr Protocol

x y = gx

Prover Verifier

k ← $
c = gk

c

q ← $q

(Pre-Quantum) Example: Schnorr Protocol

x y = gx

Prover Verifier

k ← $
c = gk

c

q ← $q

a
a = qx + k

(Pre-Quantum) Example: Schnorr Protocol

x y = gx

Prover Verifier

k ← $
c = gk

c

q ← $q

a
a = qx + k

Check ga = yq ⋅ c

Question 3

Question 3

x y = gx

Prover Verifier

k ← $
c = gk

c

q ← $q

a
a = qx + k

Check ga = yq ⋅ c

Q. Why is Schnorr protocol zero-knowledge?

x y = gx

Prover Verifier

k ← $
c = gk

c

q ← $q

a
a = qx + k

Check ga = yq ⋅ c

Answer

Simulator 🤖

x y = gx

Prover Verifier

k ← $
c = gk

c

q ← $q

a
a = qx + k

Check ga = yq ⋅ c

Answer

Simulator 🤖

q ← $
a ← $
c = ga/yq

(c, a, q)

Perfect zero-knowledge

x y = gx

Prover Verifier

k ← $
c = gk

c

q ← $q

a
a = qx + k

Check ga = yq ⋅ c

Answer

Simulator 🤖

q ← $
a ← $
c = ga/yq

(c, a, q)

Perfect zero-knowledge 💡 Knowing the question (a.k.a. challenge) before
the commitment enables perfect simulation.

commitment

Question 4

Question 4

x y = gx

Prover Verifier

k ← $
c = gk

c

q ← $q

a
a = qx + k

Check ga = yq ⋅ c

Q. Why is Schnorr protocol knowledge sound?

Answer

c

c
q1
a1

c
q2
a2

a1 = q1x + k a2 = q2x + k

Extractor

x = (a1 − a2)/(q1 − q2) x

Answer

c

c
q1
a1

c
q2
a2

a1 = q1x + k a2 = q2x + k

Extractor

x = (a1 − a2)/(q1 − q2) x

2-Special Knowledge Soundness

Answer

c

c
q1
a1

c
q2
a2

a1 = q1x + k a2 = q2x + k

Extractor

x = (a1 − a2)/(q1 − q2) x

2-Special Knowledge Soundness

💡 For any , if can produce 2 transcripts
 (with same), then Extractor gets .
c ≠

(c, q, a) c x

Answer

c

c
q1
a1

c
q2
a2

a1 = q1x + k a2 = q2x + k

Extractor

x = (a1 − a2)/(q1 − q2) x

2-Special Knowledge Soundness

💡 For any , if can produce 2 transcripts
 (with same), then Extractor gets .
c ≠

(c, q, a) c x

 If don’t know , they can produce
at most one such transcript.
⇒ x

Answer

c

c
q1
a1

c
q2
a2

a1 = q1x + k a2 = q2x + k

Extractor

x = (a1 − a2)/(q1 − q2) x

2-Special Knowledge Soundness

💡 For any , if can produce 2 transcripts
 (with same), then Extractor gets .
c ≠

(c, q, a) c x

 If don’t know , they can produce
at most one such transcript.
⇒ x

 Soundness error =
 =
⇒ P["getting the right q"]

2−|q|

Soundness Amplification
Prover Verifier

ε = P[
✅

]

⚠ Might be non-negligible!

Soundness Amplification
Prover Verifier

ε = P[
✅

]

ε = P[
✅

]

Soundness Amplification
Prover Verifier

......

ε = P[
✅

]

ε = P[
✅

]
ε2 = P[

✅
 twice]×

Soundness Amplification
Prover Verifier

..........

ε = P[
✅

]

ε = P[
✅

]
ετ = P[

✅
 τ times]

×

⋮ ⋮

ε = P[
✅

]

Soundness Amplification
Prover Verifier

..........

ε = P[
✅

]

ε = P[
✅

]
ετ = P[

✅
 τ times]

×

⋮ ⋮

ε = P[
✅

]

Sequential repetition

Soundness Amplification
Prover Verifier

⋮

⋮

⋮

Parallel repetition

Soundness Amplification

..........

ετ = P[
✅

 τ times]

Prover Verifier

⋮

⋮

⋮

Parallel repetition

Non-Interactive Proof

Non-Interactive Proof

I know
s.t.

x
y = C(x)

x y, C

Ok ✅ / Nok ⛔
𝖵𝖾𝗋𝗂𝖿 : π ↦

Prover Verifier

π

Fiat-Shamir Transform

Prover

c
q1
a1

⋮
qn
an

q2
a2

Verifier🎲

🎲

🎲

Public-coin

Fiat-Shamir Transform

Prover

c
q1
a1

⋮
qn
an

q2
a2

HASH q1 = 𝖧𝖺𝗌𝗁(c)

🎲

🎲

Fiat-Shamir Transform

Prover

c
q1
a1

⋮
qn
an

q2
a2

HASH

HASH

q1 = 𝖧𝖺𝗌𝗁(c)

q2 = 𝖧𝖺𝗌𝗁(c, a1)

🎲

Fiat-Shamir Transform

Prover

c
q1
a1

⋮
qn
an

q2
a2

HASH

HASH

HASH

q1 = 𝖧𝖺𝗌𝗁(c)

q2 = 𝖧𝖺𝗌𝗁(c, a1)

q3 = 𝖧𝖺𝗌𝗁(c, a1, a2)

🎲

Fiat-Shamir Transform

Prover

c
q1
a1

⋮
qn
an

q2
a2

HASH

HASH

HASH

π = (c, a1, …, an)

q1 = 𝖧𝖺𝗌𝗁(c)

q2 = 𝖧𝖺𝗌𝗁(c, a1)

q3 = 𝖧𝖺𝗌𝗁(c, a1, a2)

⋮

Fiat-Shamir Transform

Prover

c
q1
a1

⋮
qn
an

q2
a2

HASH

HASH

HASH

π = (c, a1, …, an)

q1 = 𝖧𝖺𝗌𝗁(c)

q2 = 𝖧𝖺𝗌𝗁(c, a1)

q3 = 𝖧𝖺𝗌𝗁(c, a1, a2)

checks by recomputing the hashs
instead of randomly picking the ’s

π
qi

⋮

Fiat-Shamir Transform

Prover

c
q1
a1

⋮
qn
an

q2
a2

HASH

HASH

HASH

π = (c, a1, …, an)

q1 = 𝖧𝖺𝗌𝗁(c)

q2 = 𝖧𝖺𝗌𝗁(c, a1)

q3 = 𝖧𝖺𝗌𝗁(c, a1, a2)

checks by recomputing the hashs
instead of randomly picking the ’s

π
qi

💡 behaves as a random function.
Security in the Random Oracle Model (ROM).
𝖧𝖺𝗌𝗁(⋅)

⋮

Question 5

Question 5

⋮

⋮

⋮

⋮

Sequential
repetition

Parallel
repetition

Q. With Fiat-Shamir, which one is better and why?

Answer

HASH
c1

Try new until

can be answered trials

c1 q1 = 𝖧𝖺𝗌𝗁(c1)
⇒1/ε

⋮

Answer

HASH
c1

Try new until

can be answered trials

c1 q1 = 𝖧𝖺𝗌𝗁(c1)
⇒1/ε

HASH

Try new until

can be answered trials

c2 q2 = 𝖧𝖺𝗌𝗁(c1, a1, c2)
⇒1/εc2

⋮

Answer

HASH

⋮

c1

Try new until

can be answered trials

c1 q1 = 𝖧𝖺𝗌𝗁(c1)
⇒1/ε

HASH

Try new until

can be answered trials

c2 q2 = 𝖧𝖺𝗌𝗁(c1, a1, c2)
⇒1/ε

⋮

HASH

Try new until

can be answered trials

cτ qτ = 𝖧𝖺𝗌𝗁(c1, a1, …, cτ)
⇒1/ε

c2

cτ

Answer

HASH
c1

Try new until

can be answered trials

c1 q1 = 𝖧𝖺𝗌𝗁(c1)
⇒1/ε

HASH

Try new until

can be answered trials

c2 q2 = 𝖧𝖺𝗌𝗁(c1, a1, c2)
⇒1/ε

⋮

HASH

Try new until

can be answered trials

cτ qτ = 𝖧𝖺𝗌𝗁(c1, a1, …, cτ)
⇒1/ε

 Forge in time sequential

 repetition is weak with Fiat Shamir.

τ ⋅ (1/ε) ⇒⚠

c2

cτ

⋮

Answer
Prover

⋮

⋮

⋮

Answer
Prover

⋮

⋮

⋮

HASH

Answer
Prover

⋮

⋮

⋮

HASH

Try times to get questions

that can all be answered at the

same time.

1/ετ τ

Answer
Prover

⋮

⋮

⋮

HASH

Try times to get questions

that can all be answered at the

same time.

1/ετ τ

 Parallel repetition is

 secure with Fiat Shamir.🛡

ZK PoK + Fiat-Shamir = Signature

⋮

⋮

⋮

x

⃗c

⃗q

⃗a

y = C(x)

𝖵𝖾𝗋𝗂𝖿 𝖯𝗋𝗈𝗈𝖿(y, ⃗c , ⃗q , ⃗a) ↦
✅

 /
⛔

⃗a = 𝖠𝗇𝗌𝗐𝖾𝗋(x, ⃗c , ⃗q)

⋮

⋮

⋮

x

HASH⃗c

⃗q

⃗a

⃗a = 𝖠𝗇𝗌𝗐𝖾𝗋(x, ⃗c , ⃗q)

ZK PoK + Fiat-Shamir = Signature

⋮

⋮

⋮

x

HASH

message ✉

⃗c

⃗q

⃗a

⃗a = 𝖠𝗇𝗌𝗐𝖾𝗋(x, ⃗c , ⃗q)

ZK PoK + Fiat-Shamir = Signature

⋮

⋮

⋮

x

HASH

message ✉

σ := (⃗c , ⃗a)
signature

⃗c

⃗q

⃗a

⃗a = 𝖠𝗇𝗌𝗐𝖾𝗋(x, ⃗c , ⃗q)

ZK PoK + Fiat-Shamir = Signature

⋮

⋮

⋮

x

HASH

message ✉

σ := (⃗c , ⃗a)

Verif Sig :

 1.

 2.

(y, σ, msg)
⃗q = 𝖧𝖺𝗌𝗁(msg, ⃗c)

𝖵𝖾𝗋𝗂𝖿 𝖯𝗋𝗈𝗈𝖿(y, ⃗c , ⃗q , ⃗a)signature

⃗c

⃗q

⃗a

⃗a = 𝖠𝗇𝗌𝗐𝖾𝗋(x, ⃗c , ⃗q)

ZK PoK + Fiat-Shamir = Signature

Signature Security

• Security in the Random Oracle Model

‣ EUF-CMA adversary algorithm to recover

• Zero Knowledge signatures do not leak information on

‣ ZK Simulator Signature oracle in the EUF-CMA game

• Knowledge Soundness can be extracted from an EUF-CMA adversary

‣ Extractor Recovers from forged signatures (1, 2, a few)

⇒ x

⇒ x

→

⇒ x

→ x

Signature Security

• Security in the Random Oracle Model

‣ EUF-CMA adversary algorithm to recover

• Zero Knowledge signatures do not leak information on

‣ ZK Simulator Signature oracle in the EUF-CMA game

• Knowledge Soundness can be extracted from an EUF-CMA adversary

‣ Extractor Recovers from forged signatures (1, 2, a few)

⇒ x

⇒ x

→

⇒ x

→ x

Signature Security

• Security in the Random Oracle Model

‣ EUF-CMA adversary algorithm to recover

• Zero Knowledge signatures do not leak information on

‣ ZK Simulator Signature oracle in the EUF-CMA game

• Knowledge Soundness can be extracted from an EUF-CMA adversary

‣ Extractor Recovers from forged signatures (1, 2, a few)

⇒ x

⇒ x

→

⇒ x

→ x

Introduction to the
MPC-in-the-Head Paradigm

Secret Sharing

• Random generation:

• Deterministic reconstruction:

• Privacy: is -private

 any set of shares is statistically independent of

 any set of shares can be perfectly simulated w/o

[[x]] = ([[x]]1, …, [[x]]N) ∈ 𝔽 N

[[x]] ← 𝖦𝖾𝗇𝖾𝗋𝖺𝗍𝖾(x, $)

x = 𝖱𝖾𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍([[x]])

[[x]] ℓ

⇔ ℓ {[[x]]i} x

⇔ ℓ {[[x]]i} x

Secret Sharing

• Random generation:

• Deterministic reconstruction:

• Privacy: is -private

 any set of shares is statistically independent of

 any set of shares can be perfectly simulated w/o

[[x]] = ([[x]]1, …, [[x]]N) ∈ 𝔽 N

[[x]] ← 𝖦𝖾𝗇𝖾𝗋𝖺𝗍𝖾(x, $)

x = 𝖱𝖾𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍([[x]])

[[x]] ℓ

⇔ ℓ {[[x]]i} x

⇔ ℓ {[[x]]i} x

Secret Sharing

• Random generation:

• Deterministic reconstruction:

• Privacy: is -private

 any set of shares is statistically independent of

 any set of shares can be perfectly simulated w/o

[[x]] = ([[x]]1, …, [[x]]N) ∈ 𝔽 N

[[x]] ← 𝖦𝖾𝗇𝖾𝗋𝖺𝗍𝖾(x, $)

x = 𝖱𝖾𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍([[x]])

[[x]] ℓ

⇔ ℓ {[[x]]i} x

⇔ ℓ {[[x]]i} x

Secret Sharing

• Random generation:

• Deterministic reconstruction:

• Privacy: is -private

 any set of shares is statistically independent of

 any set of shares can be perfectly simulated w/o

[[x]] = ([[x]]1, …, [[x]]N) ∈ 𝔽 N

[[x]] ← 𝖦𝖾𝗇𝖾𝗋𝖺𝗍𝖾(x, $)

x = 𝖱𝖾𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍([[x]])

[[x]] ℓ

⇔ ℓ {[[x]]i} x

⇔ ℓ {[[x]]i} x

Secret Sharing
Example: additive secret sharing

• Reconstruction:

• Generation:

 ,

x = ∑
N

i=1
[[x]]i

[[x]]1, …, [[x]]N−1 ← $ [[x]]N = x − ∑
N−1

i=1
[[x]]i

Question 6

Q. Additive sharing is -private for which ?ℓ ℓ

Question 6

Q. Additive sharing is -private for which ?ℓ ℓ

A. Additive sharing is -private.(N − 1)

• Binding: no way can be opened to

• Hiding: does not reveal information about (without)

x′ ≠ x

x

Prover Verifier

x
🔒

Commitment Scheme

• Binding: no way can be opened to

• Hiding: does not reveal information about (without)

x′ ≠ x

x

Prover Verifier

x
🔒

Later, optionally…
🔑 x

🔐
Opening:

→ x

Commitment Scheme

• Binding: no way can be opened to

• Hiding: does not reveal information about (without)

x′ ≠ x

x

Prover Verifier

x
🔒

Later, optionally…
🔑 x

🔐
Opening:

→ x

x
🔒

Commitment Scheme

• Binding: no way can be opened to

• Hiding: does not reveal information about (without)

x′ ≠ x

x

Prover Verifier

x
🔒

Later, optionally…
🔑 x

🔐
Opening:

→ x

x
🔒

🔑x
🔒

Commitment Scheme

Question 7

Q. How to construct a simple binding and hiding
commitment scheme using symmetric cryptography?

Question 7

Q. How to construct a simple binding and hiding
commitment scheme using symmetric cryptography?

A. Hash commitment:

 with := Hash(x ∥ ρ) ρ ← $:= (x, ρ)x

🔒 🔑

Question 7

Q. How to construct a simple binding and hiding
commitment scheme using symmetric cryptography?

A. Hash commitment:

 with := Hash(x ∥ ρ) ρ ← $:= (x, ρ)x

🔒 🔑

‣ Biding by collision resistance

‣ Hiding in the ROM

Question 7

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]5

• Input: the parties receive a sharing

• MPC: the parties jointly compute

• -privacy: the views of any parties
reveal no information on

• Semi-honest model: the parties follow
the steps of the protocol

[[x]]

y = C(x)

ℓ ℓ
x

Multiparty Computation (MPC) Protocol

🧛🥷

👨🎤

🧑🚀

🦸

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]5

• Input: the parties receive a sharing

• MPC: the parties jointly compute

• -privacy: the views of any parties
reveal no information on

• Semi-honest model: the parties follow
the steps of the protocol

[[x]]

y = C(x)

ℓ ℓ
x

Multiparty Computation (MPC) Protocol

🧛🥷

👨🎤

🧑🚀

🦸

My view = my input share, my internal
randomness and all the messages I receive

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]5

• Input: the parties receive a sharing

• MPC: the parties jointly compute

• -privacy: the views of any parties
reveal no information on

• Semi-honest model: the parties follow
the steps of the protocol

[[x]]

y = C(x)

ℓ ℓ
x

Multiparty Computation (MPC) Protocol

🧛🥷

👨🎤

🧑🚀

🦸

My view = my input share, my internal
randomness and all the messages I receive

MPC in the Head

x y, C

Generate [[x]]
Run MPC protocol

MPC in the Head

x y, Cview = input share,

 randomness,

 received messages

🔒 view commitment

Generate [[x]]
Run MPC protocol

MPC in the Head

Commitment of views

x y, C

🔒 🔒 🔒 🔒 🔒

view = input share,

 randomness,

 received messages

🔒 view commitment

Generate [[x]]
Run MPC protocol

MPC in the Head

Commitment of views

Challenge: parties to reveal

x y, C

🔒 🔒 🔒 🔒 🔒

view = input share,

 randomness,

 received messages

🔒 view commitment

Generate [[x]]
Run MPC protocol

MPC in the Head

Commitment of views

Challenge: parties to reveal

Response: open views

x y, C

🔒 🔒 🔒 🔒 🔒

view = input share,

 randomness,

 received messages

🔒 view commitment

Generate [[x]]
Run MPC protocol

MPC in the Head

Commitment of views

Challenge: parties to reveal

Response: open views

x y, C

🔒 🔒 🔒 🔒 🔒

view = input share,

 randomness,

 received messages

🔒 view commitment

Generate [[x]]
Run MPC protocol

(1) Check commitments:
🔒

🔒

(2) Check view consistency: (3) Check result:

y

y

Question 8

Q. This protocol is zero-knowledge if the MPC protocol is … ?

Question 8
Commitment of views

Challenge: parties to reveal

Response: open views

🔒 🔒 🔒 🔒 🔒

Q. This protocol is zero-knowledge if the MPC protocol is … ?

Question 8
Commitment of views

Challenge: parties to reveal

Response: open views

🔒 🔒 🔒 🔒 🔒

A. 2-private.

Soundness
Commitment of views

Challenge: parties to reveal

Response: open views

🔒 🔒 🔒 🔒 🔒

(1) Check commitments:
🔒

🔒

(2) Check view consistency: (3) Check result:

y

y

If doesn’t know then
parties receive with
and .

x
[[x̃]] x̃ ≠ x

𝖬𝖯𝖢([[x̃]]) ≠ y

Soundness
Commitment of views

Challenge: parties to reveal

Response: open views

🔒 🔒 🔒 🔒 🔒

(1) Check commitments:
🔒

🔒

(2) Check view consistency: (3) Check result:

y

y

If doesn’t know then
parties receive with
and .

Therefore either

 (1)

 for some party

x
[[x̃]] x̃ ≠ x

𝖬𝖯𝖢([[x̃]]) ≠ y

🔒
⛔

Soundness
Commitment of views

Challenge: parties to reveal

Response: open views

🔒 🔒 🔒 🔒 🔒

(1) Check commitments:
🔒

🔒

(2) Check view consistency: (3) Check result:

y

y

If doesn’t know then
parties receive with
and .

Therefore either

 (1)

 for some party

 (2)

 for two parties

x
[[x̃]] x̃ ≠ x

𝖬𝖯𝖢([[x̃]]) ≠ y

🔒
⛔

⛔

Soundness
Commitment of views

Challenge: parties to reveal

Response: open views

🔒 🔒 🔒 🔒 🔒

(1) Check commitments:
🔒

🔒

(2) Check view consistency: (3) Check result:

y

y

If doesn’t know then
parties receive with
and .

Therefore either

 (1)

 for some party

 (2)

 for two parties

 (3)

 for some party

x
[[x̃]] x̃ ≠ x

𝖬𝖯𝖢([[x̃]]) ≠ y

🔒
⛔

⛔

y⛔

Question 9

Q. What is the soundness error of this protocol?

Question 9
Commitment of views

Challenge: parties to reveal

Response: open views

🔒 🔒 🔒 🔒 🔒

Q. What is the soundness error of this protocol?

Question 9
Commitment of views

Challenge: parties to reveal

Response: open views

🔒 🔒 🔒 🔒 🔒

A. If the prover cheat on a single message

 the verifier detects the cheat only if the challenge is

 Soundness error = = 1 − P[detection] 1 −
2

N(N − 1)

Q. What is the soundness error of this protocol?

Question 9
Commitment of views

Challenge: parties to reveal

Response: open views

🔒 🔒 🔒 🔒 🔒

A. If the prover cheat on a single message

 the verifier detects the cheat only if the challenge is

 Soundness error = = 1 − P[detection] 1 −
2

N(N − 1)😇 We can do much better!
(See you tomorrow!)

MPC for Arithmetic Circuits

• Computation composed of and

• Additions local computation

• Multiplications require communication between parties

‣ Common technique: using multiplication triples

‣ Assume the parties have pre-generated/distributed random
triples such that

C (+)𝔽 (×)𝔽

→

[[x + y]] = ([[x]]1 + [[y]]1, …, [[x]]N + [[y]]N)
→

[[a]], [[b]], [[c]] [[c]] = [[a ⋅ b]]

MPC for Arithmetic Circuits

• Computation composed of and

• Additions local computation

• Multiplications require communication between parties

‣ Common technique: using multiplication triples

‣ Assume the parties have pre-generated/distributed random
triples such that

C (+)𝔽 (×)𝔽

→

[[x + y]] = ([[x]]1 + [[y]]1, …, [[x]]N + [[y]]N)
→

[[a]], [[b]], [[c]] [[c]] = [[a ⋅ b]]

MPC for Arithmetic Circuits

• Computation composed of and

• Additions local computation

• Multiplications require communication between parties

‣ Common technique: using multiplication triples

‣ Assume the parties have pre-generated/distributed random
triples such that

C (+)𝔽 (×)𝔽

→

[[x + y]] = ([[x]]1 + [[y]]1, …, [[x]]N + [[y]]N)
→

[[a]], [[b]], [[c]] [[c]] = [[a ⋅ b]]

MPC for Arithmetic Circuits

• Computation composed of and

• Additions local computation

• Multiplications require communication between parties

‣ Common technique: using multiplication triples

‣ Assume the parties have pre-generated/distributed random
triples such that

C (+)𝔽 (×)𝔽

→

[[x + y]] = ([[x]]1 + [[y]]1, …, [[x]]N + [[y]]N)
→

[[a]], [[b]], [[c]] [[c]] = [[a ⋅ b]]

MPC for Arithmetic Circuits
• Multiplication of and using

‣ Let and

‣ We have

‣ Giving

• Protocol

1. Parties locally compute and

2. Parties broadcast and

3. Parties reconstruct and and compute as above

[[x]] [[y]] [[a]], [[b]], [[c]]

α = x + a β = y + b

x ⋅ y = (α − a)(β − b) = αβ − βa − αb + ab

[[xy]] = αβ − β[[a]] − α[[b]] + [[c]]

[[α]] = [[x]] + [[a]] [[β]] = [[y]] + [[b]]

[[α]] [[β]]

α β [[xy]]

MPC for Arithmetic Circuits
• Multiplication of and using

‣ Let and

‣ We have

‣ Giving

• Protocol:

1. Parties locally compute and

2. Parties broadcast and

3. Parties reconstruct and and compute as above

[[x]] [[y]] [[a]], [[b]], [[c]]

α = x + a β = y + b

x ⋅ y = (α − a)(β − b) = αβ − βa − αb + ab

[[xy]] = αβ − β[[a]] − α[[b]] + [[c]]

[[α]] = [[x]] + [[a]] [[β]] = [[y]] + [[b]]

[[α]] [[β]]

α β [[xy]]

MPC for Arithmetic Circuits
• Multiplication of and using

‣ Let and

‣ We have

‣ Giving

• Protocol:

1. Parties locally compute and

2. Parties broadcast and

3. Parties reconstruct and and compute as above

[[x]] [[y]] [[a]], [[b]], [[c]]

α = x + a β = y + b

x ⋅ y = (α − a)(β − b) = αβ − βa − αb + ab

[[xy]] = αβ − β[[a]] − α[[b]] + [[c]]

[[α]] = [[x]] + [[a]] [[β]] = [[y]] + [[b]]

[[α]] [[β]]

α β [[xy]]

😇
Compiling this protocol
with MPCitH, we get a ZK
PoK for .y = C(x)

MPC for Arithmetic Circuits
• Multiplication of and using

‣ Let and

‣ We have

‣ Giving

• Protocol:

1. Parties locally compute and

2. Parties broadcast and

3. Parties reconstruct and and compute as above

[[x]] [[y]] [[a]], [[b]], [[c]]

α = x + a β = y + b

x ⋅ y = (α − a)(β − b) = αβ − βa − αb + ab

[[xy]] = αβ − β[[a]] − α[[b]] + [[c]]

[[α]] = [[x]] + [[a]] [[β]] = [[y]] + [[b]]

[[α]] [[β]]

α β [[xy]]

😇
Compiling this protocol
with MPCitH, we get a ZK
PoK for .y = C(x)

🤔
Wait, what do you do for
multiplication triples?
(See you tomorrow!)

