Matthieu Rivain

New Trends in PQC Workshop Oxford, 11 June, 2024

Joint work with Thibauld Feneuil

https://ia.cr/2022/1407

Original TCitH framework (Asiacrypt'23)

https://ia.cr/2023/1573

Improved TCitH framework (preprint)

- MPC-in-the-Head paradigm
- TC-in-the-Head framework (and application to PQ signatures)
 - TCitH with Merkle trees
 - TCitH with GGM trees
 - **X** TCitH using multiplication homomorphism
 - - TCitH using packed secret sharing
- Application: post-quantum ring signatures
- Relation to other proof systems

MPC-in-the-Head paradigm

MPC-in-the-Head paradigm

MPC-in-the-Head paradigm Multiparty computation (MPC) **One-way function** Input sharing [[x]] $F: x \mapsto y$ Joint evaluation of: $g(x) = \begin{cases} \text{Accept} & \text{if } F(x) = y \\ \text{Reject} & \text{if } F(x) \neq y \end{cases}$ E.g. AES, MQ system, Syndrome decoding Signature scheme Zero-knowledge proof msg \mathcal{X} У X Hash function OK you know xVerifier Prover signature

MPC-in-the-Head paradigm

MPC model

• Jointly compute

$$g(x) = \begin{cases} \text{Accept} & \text{if } F(x) = y \\ \text{Reject} & \text{if } F(x) \neq y \end{cases}$$

- ℓ -private
- Semi-honest model

[[x]] is a linear secret sharing of x

MPC model

• Jointly compute

 $g(x) = \begin{cases} \text{Accept} & \text{if } F(x) = y \\ \text{Reject} & \text{if } F(x) \neq y \end{cases}$

- *l*-private
- Semi-honest model
- Broadcast model

[[x]] is a linear secret sharing of x

① Generate and commit shares $[[x]] = ([[x]]_1, ..., [[x]]_N)$

1	$\operatorname{Com}^{\rho_1}(\llbracket x \rrbracket_1)$	
	$\operatorname{Com}^{\rho_N}(\llbracket x \rrbracket_N)$	

① Generate and commit shares $[[x]] = ([[x]]_1, ..., [[x]]_N)$

② Run MPC in their head

$\operatorname{Com}^{\rho_1}(\llbracket x \rrbracket_1)$	
$\operatorname{Com}^{PN}(\llbracket x \rrbracket_N)$	
send broadcast $\llbracket \alpha \rrbracket_1, \dots, \llbracket \alpha \rrbracket_N$	

<u>Verifier</u>

2 Run MPC in their head

(4) Open parties in I

<u>Prover</u>

<u>Verifier</u>

Prover

<u>Verifier</u>

Prover

Verifier

Prover

Verifier

Prover

Verifier

TC-in-the-Head framework (with Merkle trees)

<u>Verifier</u>

Threshold Computation in the Head $Com^{\rho_1}([[x]]_1)$ Generate and commit shares $\llbracket x \rrbracket = (\llbracket x \rrbracket_1, \dots, \llbracket x \rrbracket_N)$ $\mathbf{n}^{\rho_N}(\llbracket x \rrbracket_N)$ 2 Run MPC in their hea Shamir secret sharing: $\llbracket x \rrbracket_1$ $\llbracket x \rrbracket$ $\llbracket x \rrbracket_i := P(e_i) \quad \forall i$ n set of parties t. $|I| = \ell$. for $P(X) := x + r_1 \cdot X + \dots + r_{\ell} \cdot X^{\ell}$ $[x]_N$ $\|x\|$ $\operatorname{Com}^{\rho_i}(\llbracket x \rrbracket_i)$ ion $\llbracket \alpha \rrbracket_i = \varphi(\llbracket x \rrbracket_i)$ ④ Open parties in *I* ccept <u>Verifier</u> Prover

Prover

Sharing / MPC protocol *C*-private

 \Rightarrow soundness error = $(N - \ell)/N$ (?)

Proadcast messages must be valid Shamir's sharings

parties

$$\mathcal{P}_i$$

 \mathbf{I}_i
 $= \varphi([[x]]_i)$

VCIIIC

Prover

Sharing / MPC protocol *C*-private \Rightarrow soundness error = $(N - \ell)/N$ (?) P broadcast messages must be valid Shamir's sharings \Rightarrow soundness error =

Soundness

- p = "false positive probability"
 - = $P[MPC \text{ protocol accepts } [[x]] \text{ while } f(x) \neq y]$

Soundness

$$p =$$
 "false positive probability"

= $P[MPC \text{ protocol accepts } [[x]]] \text{ while } f(x) \neq y]$

Soundness error of standard MPCitH

p = "false positive probability" = $P[MPC \text{ protocol accepts } [[x]] \text{ while } f(x) \neq y]$

- Prover can commit invalid sharings
- Let $[x]^{(J)} =$ sharing interpolating $([x]_i)_{i \in J}$
- Many different $[[x]]^{(J)} \Rightarrow$ many possible false positives

- Prover can commit invalid sharings
- Let $[x]^{(J)} =$ sharing interpolating $([x]_i)_{i \in J}$
- Many different $[x]^{(J)} \Rightarrow$ many possible false positives
- "Degree-enforcing commitment scheme"
- Verifier \rightarrow Prover : random $\{\gamma_j\}$
- Prover \rightarrow Verifier : $\llbracket \xi \rrbracket = \Sigma_j \gamma_i \cdot \llbracket x_j \rrbracket$
- Before MPC computation

- Prover can commit invalid sharings
- Let $[x]^{(J)} =$ sharing interpolating $([x]_i)_{i \in J}$
- Many different $[[x]]^{(J)} \Rightarrow$ many possible false positives
- "Degree-enforcing commitment scheme"
- Verifier \rightarrow Prover : random $\{\gamma_j\}$
- Prover \rightarrow Verifier : $\llbracket \xi \rrbracket = \Sigma_j \gamma_i \cdot \llbracket x_j \rrbracket$
- Before MPC computation

$$\ell = 1 \Rightarrow$$
 Similar soundness: $\frac{1}{N} + p$

$$\ell = 1 \implies \text{Similar soundness: } \frac{1}{N} + p$$

MPCitH	TC:+⊔
+ seed trees	$\ell = 1$
+ hypercube [AGHHJY23]	$\nu - 1$

$$\ell = 1 \Rightarrow$$
 Similar soundness: $\frac{1}{N} + p$

$$\ell = 1 \Rightarrow$$
 Similar soundness: $\frac{1}{N} + p$

	MPCitH + seed trees + hypercube [AGHHJY23]	$\begin{array}{l} \textbf{TCitH} \\ \ell = 1 \end{array}$	
Prover runtime	Party emulations: log N +1 Symmetric crypto: O(N)	Party emulations: 2 Symmetric crypto: <i>O(N)</i>	•••
Verifier runtime	Party emulations.log N Symmetric crypto: O(N)	Party emulations 1 Symmetric crypto: O(log N)	
<u> </u>	•	fewer party emulations	

$$\ell = 1 \Rightarrow$$
 Similar soundness: $\frac{1}{N} + p$

	MPCitH + seed trees + hypercube [AGHHJY23]	$TCitH$ $\ell = 1$	
Prover runtime	Party emulations: log N +1 Symmetric crypto: O(N)	Party emulations: 2 Symmetric crypto: <i>O(N)</i>	
Verifier runtime	Party emulations: log N Symmetric crypto: O(N)	Party emulations: 1 Symmetric crypto: O(log N)	

much less
symmetric crypto

$$\ell = 1 \Rightarrow$$
 Similar soundness: $\frac{1}{N} + p$

	MPCitH + seed trees + hypercube [AGHHJY23]	$\begin{array}{l} \textbf{TCitH} \\ \ell = 1 \end{array}$	
Prover runtime	Party emulations: log N +1 Symmetric crypto: O(N)	Party emulations: 2 Symmetric crypto: <i>O(N)</i>	
Verifier runtime	Party emulations: log N Symmetric crypto: O(N)	Party emulations: 1 Symmetric crypto: <i>O(log N</i>)	
Size of tree	128-bit security: ~2KB 256-bit security: ~8KB	128-bit security: ~4KB 256-bit security: ~16KB	
		×2	

$$\ell = 1 \Rightarrow$$
 Similar soundness: $\frac{1}{N} + p$

	MPCitH + seed trees + hypercube [AGHHJY23]	$TCitH$ $\ell = 1$	
Prover runtime	Party emulations: log N +1 Symmetric crypto: O(N)	Party emulations: 2 Symmetric crypto: <i>O(N)</i>	::
Verifier runtime	Party emulations: log N Symmetric crypto: O(N)	Party emulations: 1 Symmetric crypto: <i>O(log N</i>)	
Size of tree	128-bit security: ~2KB 256-bit security: ~8KB	128-bit security: ~4KB 256-bit security: ~16KB	
Number of parties		$N \leq \mathbb{F} $	

$$\ell = 1 \Rightarrow$$
 Similar soundness: $\frac{1}{N} + p$

	MPCitH + seed trees + hypercube [AGHHJY23]	$\begin{array}{l} \mathbf{TCitH} \\ \ell = 1 \end{array}$	
Prover runtime	Party emulations: log N +1 Symmetric crypto: O(N)	Party emulations: 2 Symmetric crypto: <i>O(N)</i>	
Verifier runtime	Party emulations: log N Symmetric crypto: O(N)	Party emulations: 1 Symmetric crypto: <i>O(log N</i>)	
Size of tree G	128-bit security: ~2KB etting ^{it} rid ^{it} of/these lim	128-bit security: ~4KB itations ^{security} : ~16KB	
Number of parties	\rightarrow TCitH with GGM	tree $N \leq \mathbb{F} $	

TC-in-the-Head framework with GGM trees

Step 1: Generate a replicated secret sharing [ISN89]

Step 1: Generate a replicated secret sharing [ISN89]

Step 1: Generate a replicated secret sharing [ISN89]

Step 2: Convert it into a Shamir's secret sharing [CDI05]

Step 1: Generate a replicated secret sharing [ISN89]

Step 2: Convert it into a Shamir's secret sharing [CDI05]

Step 2: Convert it into a Step 1: Generate a Shamir's secret sharing [CDI05] replicated secret sharing [ISN89] $x = r_1 + r_2 + \dots + r_N$ Let $P(X) = \Delta_x + \sum_j r_j P_j(X)$ with $P_i(X) = 1 - (1/e_i) \cdot X$ $[[x]] = (P(e_1), \dots, P(e_N))$ is a valid Shamir's secret sharing of x $+ r_N = x + \Delta_x$ $r_1 + r_2 +$ • • • Party *i* can compute \rightarrow Party 1 $\llbracket x \rrbracket_i = \sum r_j P_j(e_i)$ \rightarrow Party 2 $\mathcal{N} \to \mathsf{Party}\,N$ (since $P_i(e_i) = 0$)

Step 2: Convert it into a Step 1: Generate a Shamir's secret sharing [CDI05] replicated secret sharing [ISN89] $x = r_1 + r_2 + \dots + r_N$ Let $P(X) = \Delta_x + \sum_j r_j P_j(X)$ with $P_i(X) = 1 - (1/e_i) \cdot X$ $[[x]] = (P(e_1), \dots, P(e_N))$ is a valid Shamir's secret sharing of x $+ r_N = x + \Delta_x$ $r_1 + r_2 +$ • • • • • • Party *i* can compute \rightarrow Party 1 $\llbracket x \rrbracket_i = \sum r_j P_j(e_i)$ \rightarrow Party 2 $\bigotimes \rightarrow Party N$ (since $P_i(e_i) = 0$)

Step 2: Convert it into a Step 1: Generate a Shamir's secret sharing [CDI05] replicated secret sharing [ISN89] $x = r_1 + r_2 + \dots + r_N$ Let $P(X) = \Delta_x + \sum_j r_j P_j(X)$ with $P_i(X) = 1 - (1/e_i) \cdot X$ $[[x]] = (P(e_1), \dots, P(e_N))$ is a valid Shamir's secret sharing of x $r_1 + r_2 +$ $+r_N = x + \Delta_x$ • • • Party *i* can compute \rightarrow Party 1 $\llbracket x \rrbracket_i = \sum r_j P_j(e_i)$ \rightarrow Party 2 $\mathcal{N} \to \mathsf{Party}\,N$ (since $P_i(e_i) = 0$) 🛠 Can be adapted to $\ell > 1$

Step 2: Convert it into a Step 1: Generate a Shamir's secret sharing [CDI05] replicated secret sharing [ISN89] $x = r_1 + r_2 + \dots + r_N$ Let $P(X) = \Delta_x + \sum_j r_j P_j(X)$ with $P_i(X) = 1 - (1/e_i) \cdot X$ $[[x]] = (P(e_1), \dots, P(e_N))$ is a valid Shamir's secret sharing of x $r_1 + r_2 +$ $+r_N = x + \Delta_x$ • • • Party *i* can compute \rightarrow Party 1 $\llbracket x \rrbracket_i = \sum r_j P_j(e_i)$ \rightarrow Party 2 $D \longrightarrow Party N$ (since $P_i(e_i) = 0$) 🛠 Can be Size of adapted to $\ell > 1$ GGM tree

Step 2: Convert it into a Step 1: Generate a Shamir's secret sharing [CDI05] replicated secret sharing [ISN89] $x = r_1 + r_2 + \dots + r_N$ Let $P(X) = \Delta_x + \sum_j r_j P_j(X)$ with $P_i(X) = 1 - (1/e_i) \cdot X$ $[[x]] = (P(e_1), \dots, P(e_N))$ is a valid Shamir's secret sharing of x $r_1 + r_2 +$ $+r_N = x + \Delta_x$ • • • Party *i* can compute \rightarrow Party 1 $\llbracket x \rrbracket_i = \sum r_j P_j(e_i)$ \rightarrow Party 2 $D \longrightarrow Party N$ (since $P_i(e_i) = 0$) 🛠 Can be 🌲 Size of Good soundness adapted to $\ell > 1$ (only valid sharings) GGM tree

Step 2: Convert it into a Step 1: Generate a Shamir's secret sharing [CDI05] replicated secret sharing [ISN89] $x = r_1 + r_2 + \dots + r_N$ Let $P(X) = \Delta_x + \sum_j r_j P_j(X)$ with $P_i(X) = 1 - (1/e_i) \cdot X$ $[[x]] = (P(e_1), \dots, P(e_N))$ is a valid Shamir's secret sharing of x $+r_N = x + \Delta_x$ $r_1 + r_2 +$ • • • Party *i* can compute \rightarrow Party 1 $\llbracket x \rrbracket_i = \sum r_j P_j(e_i)$ \rightarrow Party 2 $D \longrightarrow Party N$ (since $P_i(e_i) = 0$) 🛠 Can be 🌲 Size of Good soundness **Loose fast** adapted to $\ell > 1$ (only valid sharings) GGM tree verification

	Additive MPCitH		TCitH (GGN	l tree)
	Traditional (ms)	Hypercube (ms)	TCitH (ms)	Saving
Party emulations / repetition	N	$1 + \log_2 N$	2	

	Additive MPCitH		TCitH (GGN	l tree)
	Traditional (ms)	Hypercube (ms)	TCitH (ms)	Saving
Party emulations / repetition	N	$1 + \log_2 N$	2	

 $I But only if | \mathbb{F} | \ge N$

	Additive MPCitH		TCitH (GGN	l tree)
	Traditional (ms)	Hypercube (ms)	TCitH (ms)	Saving
Party emulations / repetition	N	$1 + \log_2 N$	2	
$\blacksquare \text{But only if } \mathbb{F} \ge N$				
Party emulations = $1 + \left[\frac{\log_2 N}{\log_2 \mathbb{F} }\right]$				

	Additive MPCitH		TCitH (GGN	l tree)
	Traditional (ms)	Hypercube (ms)	TCitH (ms)	Saving
Party emulations / repetition	N	$1 + \log_2 N$	2	
			But only if $ \mathbb{F} \ge$	N
Y Pa	arty emulations	$= 1 + \left[\frac{\log_2 N}{\log_2 \mathbb{F} }\right]$	$= \begin{cases} 2\\ 1 + \log_2 N \end{cases}$	$if \mathbb{F} \ge N$ \vdots $if \mathbb{F} = 2$

	Additive MPCitH		TCitH (GGN	l tree)
	Traditional (ms)	Hypercube (ms)	TCitH (ms)	Saving
Party emulations / repetition	N	$1 + \log_2 N$	$1 + \left[\frac{\log_2 N}{\log_2 \mathbb{F} }\right]$	
AlMer	4.53	3.22	3.22	-0 %
Biscuit	17.71	4.65	4.24	-16 %
MIRA	384.26	20.11	9.89	-51 %
MiRitH-la	54.15	6.60	5.42	-18 %
MiRitH-Ib	89.50	8.66	6.66	-23 %
MQOM-31	96.41	11.27	8.74	-21 %
MQOM-251	44.11	7.56	5.97	-21 %
RYDE	12.41	4.65	4.65	-0 %
SDitH-256	78.37	7.23	5.31	-27 %
SDitH-251	19.15	7.53	6.44	-14 %

• Comparison based on a generic MPCitH library (Clibmpcith)

• Code for MPC protocols fetched from the submission packages

Using multiplication homomorphism & packed secret sharing

• Shamir's secret sharing satisfies:

• Shamir's secret sharing satisfies:

 $[\![x]\!]^{(d)} \cdot [\![y]\!]^{(d)} = [\![x \cdot y]\!]^{(2d)}$

• Simple protocol to verify polynomial constraints

• w valid $\Leftrightarrow f_1(w) = 0, \dots, f_m(w) = 0$

• Shamir's secret sharing satisfies:

- Simple protocol to verify polynomial constraints
 - w valid $\Leftrightarrow f_1(w) = 0, \dots, f_m(w) = 0$
 - parties locally compute

$$[\![\alpha]\!] = [\![v]\!] + \sum_{j=1}^{m} \gamma_j \cdot f_j([\![w]\!])$$

• Shamir's secret sharing satisfies:

- Simple protocol to verify polynomial constraints
 - w valid $\Leftrightarrow f_1(w) = 0, \dots, f_m(w) = 0$
 - parties locally compute

$$\llbracket \alpha \rrbracket = \llbracket v \rrbracket + \sum_{j=1}^{m} \gamma_j f_j(\llbracket w \rrbracket)$$

randomness
from the verifier

• Shamir's secret sharing satisfies:

- Simple protocol to verify polynomial constraints
 - w valid $\Leftrightarrow f_1(w) = 0, \dots, f_m(w) = 0$
 - parties locally compute

Using multiplication homomorphism

• Shamir's secret sharing satisfies:

 $[\![x]\!]^{(d)} \cdot [\![y]\!]^{(d)} = [\![x \cdot y]\!]^{(2d)}$

- Simple protocol to verify polynomial constraints
 - w valid $\Leftrightarrow f_1(w) = 0, \dots, f_m(w) = 0$
 - parties locally compute

Using multiplication homomorphism

• Shamir's secret sharing satisfies:

 $[x]^{(d)} \cdot [y]^{(d)} = [x \cdot y]^{(2d)}$

- Simple protocol to verify polynomial constraints
 - w valid $\Leftrightarrow f_1(w) = 0, \dots, f_m(w) = 0$

 $\|\alpha\|$

parties locally compute

 $f_j(\llbracket w \rrbracket)$

from the verifier

check $\alpha = 0$ false positive proba $1/|\mathbb{F}|$ pre-committed sharing of 0

 $\llbracket v \rrbracket$

Using multiplication homomorphism

• Shamir's secret sharing satisfies:

 $[\![x]\!]^{(d)} \cdot [\![y]\!]^{(d)} = [\![x \cdot y]\!]^{(2d)}$

- Simple protocol to verify polynomial constraints
 - w valid $\Leftrightarrow f_1(w) = 0, \dots, f_m(w) = 0$
 - parties locally compute

Here: $\ell \cdot \deg f_j$

 d_{α}

Shorter signatures for MPCitH-based candidates

	Original Size	Our Variant	Saving
Biscuit	4758 B	4 048 B	-15 %
MIRA	5 640 B	5 340 B	-5 %
MiRitH-Ia	5 665 B	4 694 B	-17 %
MiRitH-Ib	6 298 B	5 245 B	-17 %
MQOM-31	6 328 B	4 027 B	-37 %
MQOM-251	6 575 B	4 257 B	-35 %
RYDE	5 956 B	5 281 B	-11 %
SDitH	8 241 B	7 335 B	-27 %

MQ over GF(4)	8 609 B	3 858 B	-55 %
SD over GF(2)	11 160 B	7 354 B	-34 %
SD over GF(2)	12 066 B	6 974 B	-42 %

* *N* = 256

Shorter signatures for MPCitH-based candidates

	Original Size	Our Variant	Saving
Biscuit	4758 B	3 431 B	
MIRA	5 640 B	4 314 B	
MiRitH-Ia	5 665 B	3 873 B	
MiRitH-Ib	6 298 B	4 250 B	
MQOM-31	6 328 B	3 567 B	
MQOM-251	6 575 B	3 418 B	
RYDE	5 956 B	4 274 B	
SDitH	8 241 B	5 673 B	

MQ over GF(4)	8 609 B	3 301 B	
SD over GF(2)	11 160 B	7 354 B	-34 %
SD over GF(2)	12 066 B	6 974 B	-42 %

* *N* = 256 * *N* = 2048

<u>Two very recent works :</u>

- Baum, Beullens, Mukherjee, Orsini, Ramacher, Rechberger, Roy, Scholl. One Tree to Rule Them All: Optimizing GGM Trees and OWFs for Post-Quantum Signatures. <u>https://ia.cr/2024/490</u>
 - General techniques to reduce the size of GGM trees
 - Apply to TCitH-GGM (gain of ~500 B at 128-bit security)
- Bidoux, Feneuil, Gaborit, Neveu, Rivain. Dual Support Decomposition in the Head: Shorter Signatures from Rank SD and MinRank. <u>https://ia.cr/2024/541</u>
 - New MPC protocols for TCitH / VOLEitH signatures based on MinRank & Rank SD

• Shamir's secret sharing can be packed

$$\bullet P(\omega_1) = x_1, \quad \dots, \quad P(\omega_s) = x_s$$

 $\blacktriangleright P(\omega_{s+1}) = r_1 \,, \ \ldots \,, \, P(\omega_{s+\ell}) = r_\ell$

•
$$[\![x]\!]_1 = P(e_1), \ldots, [\![x]\!]_N = P(e_N)$$

- Shamir's secret sharing can be packed
 - $\blacktriangleright P(\omega_1) = x_1 , \quad \dots , \ P(\omega_s) = x_s$
 - $\blacktriangleright P(\omega_{s+1}) = r_1, \dots, P(\omega_{s+\ell}) = r_{\ell}$
 - $[\![x]\!]_1 = P(e_1), \dots, [\![x]\!]_N = P(e_N)$
- [x] + [y] =sharing of $(x_1, ..., x_s) + (y_1, ..., y_s)$
- $[x] \cdot [y] = \text{sharing of } (x_1, ..., x_s) \circ (y_1, ..., y_s)$

- Shamir's secret sharing can be packed
 - $P(\omega_1) = x_1$, ..., $P(\omega_s) = x_s$
 - $\blacktriangleright P(\omega_{s+1}) = r_1 \,, \ \ldots \,, \, P(\omega_{s+\ell}) = r_\ell$
 - $[[x]]_1 = P(e_1), \dots, [[x]]_N = P(e_N)$
- $[x] + [y] = \text{sharing of } (x_1, ..., x_s) + (y_1, ..., y_s)$
- $[x] \cdot [y] = \text{sharing of } (x_1, ..., x_s) \circ (y_1, ..., y_s)$

Soundness error

- Shamir's secret sharing can be packed
 - $\blacktriangleright P(\omega_1) = x_1, \quad \dots, \quad P(\omega_s) = x_s$
 - $\blacktriangleright P(\omega_{s+1}) = r_1 \,, \ \ldots \,, \, P(\omega_{s+\ell}) = r_\ell$
 - $[\![x]\!]_1 = P(e_1), \ldots, [\![x]\!]_N = P(e_N)$
- [x] + [y] =sharing of $(x_1, ..., x_s) + (y_1, ..., y_s)$
- $[x] \cdot [y] = \text{sharing of } (x_1, ..., x_s) \circ (y_1, ..., y_s)$

Here: $(\ell + s - 1) \cdot \deg f_i$

Soundness error

- Shamir's secret sharing can be packed
 - $P(\omega_1) = x_1$, ..., $P(\omega_s) = x_s$
 - $\blacktriangleright P(\omega_{s+1}) = r_1 \,, \ \ldots \,, \, P(\omega_{s+\ell}) = r_\ell$
 - $[[x]]_1 = P(e_1), \dots, [[x]]_N = P(e_N)$
- [x] + [y] =sharing of $(x_1, ..., x_s) + (y_1, ..., y_s)$
- $[x] \cdot [y] = \text{sharing of } (x_1, ..., x_s) \circ (y_1, ..., y_s)$
- Packed sharing & Merkle trees ≈ ÷ witness size by s
 ⇒ interesting for statements with "medium size" witness

Here: $(\ell + s - 1) \cdot \deg f_i$

Soundness error

- Shamir's secret sharing can be packed
 - $P(\omega_1) = x_1$, ..., $P(\omega_s) = x_s$
 - $\blacktriangleright P(\omega_{s+1}) = r_1 \,, \ \ldots \,, \, P(\omega_{s+\ell}) = r_\ell$
 - $[[x]]_1 = P(e_1), \dots, [[x]]_N = P(e_N)$
- [x] + [y] =sharing of $(x_1, ..., x_s) + (y_1, ..., y_s)$
- $[x] \cdot [y] = \text{sharing of } (x_1, ..., x_s) \circ (y_1, ..., y_s)$

 d_{α}

Here: $(\ell + s - 1) \cdot \deg f_i$

Soundness error

Packed sharing & Merkle trees ≈ ÷ witness size by s
 ⇒ interesting for statements with "medium size" witness

• E.g. an ISIS statement
$$\vec{t} = A \cdot \vec{e}$$
 with $\|\vec{e}\|_{\infty} \leq \beta$

TCitH-GGM	TCitH-MT
🎄 Smaller tree	🌲 Larger tree (~x2)

TCitH-GGM	TCitH-MT
🎄 Smaller tree	🌲 Larger tree (~x2)
X No advantage of packed sharing	Takes advantage of packed sharing

TCitH-GGM	TCitH-MT
🎄 Smaller tree	🌲 Larger tree (~x2)
X No advantage of packed sharing	Takes advantage of packed sharing
Naturally enforce degree of committed sharings	Need degree enforcing commitment (+1 round)

TCitH-GGM	TCitH-MT			
🎄 Smaller tree	🌲 Larger tree (~x2)			
X No advantage of packed sharing	Takes advantage of packed sharing			
Naturally enforce degree of committed sharings	Need degree enforcing commitment (+1 round)			
Setter for "small-size" statements	Setter for "medium-size" statements			

Application: post-quantum ring signatures

• One-hot encoding of j^*

$$s = (0, \dots, 0, s_{j^*} := 1, 0, \dots, 0)$$

One-hot encoding of j*

$$s = (0, \dots, 0, s_{j^*} := 1, 0, \dots, 0)$$

•
$$\Pi'$$
 computes $[[y_{j^*}]] = \sum_{j=1}^r [[s_j]] \cdot y_j$

? <u>Idea</u>:

One-hot encoding of j*

$$s = (0, \dots, 0, s_{j^*} := 1, 0, \dots, 0)$$

•
$$\Pi'$$
 computes $[[y_{j^*}]] = \sum_{j=1}^r [[s_j]] \cdot y_j$

 \bigcirc <u>Problem</u>: including [[s]] to the witness $\Rightarrow O(r)$ signature size

♀ Idea:

• One-hot encoding of j^* $s = (0,...,0, s_{j^*} := 1, 0,...,0)$

•
$$\Pi'$$
 computes $[[y_{j^*}]] = \sum_{j=1}^r [[s_j]] \cdot y_j$

 \bigcirc <u>Problem</u>: including [[s]] to the witness $\Rightarrow O(r)$ signature size

$$\begin{aligned} &\overset{\text{Solution:}}{\longrightarrow} \ [[s^{(1)}]], \dots, [[s^{(d)}]] \text{ s.t. } s = s^{(1)} \otimes \dots \otimes s^{(d)} \\ & \Rightarrow \mathcal{O}(d\sqrt[d]{r}) \text{ signature size } \Rightarrow \mathcal{O}(\log r) \end{aligned}$$

<u>Protocol Π' </u> Input: [w], $[s^{(1)}]$, ..., $[s^{(d)}]$

 Protocol Π'

 Input: [[w]], [[s⁽¹⁾]], ..., [[s^(d)]]

 1. Locally compute [[s]] = [[s₁]] ⊗ ··· ⊗ [[s_d]]

<u>Protocol Π' </u>

Input: [w], $[s^{(1)}]$, ..., $[s^{(d)}]$

1. Locally compute $\llbracket s \rrbracket = \llbracket s_1 \rrbracket \otimes \cdots \otimes \llbracket s_d \rrbracket$

2. Locally compute
$$[[y_{j^*}]] = \sum_{j=1}^r [[s_j]] \cdot y_j$$

<u>Protocol Π' </u>

Input: [w], $[s^{(1)}]$, ..., $[s^{(d)}]$

- 1. Locally compute $\llbracket s \rrbracket = \llbracket s_1 \rrbracket \otimes \cdots \otimes \llbracket s_d \rrbracket$
- 2. Locally compute $[[y_{j^*}]] = \sum_{j=1}^r [[s_j]] \cdot y_j$
- 3. Check that $\llbracket w \rrbracket$, $\llbracket y_{j^*} \rrbracket$ satisfy $f(w) = y_{j^*}$ using Π

<u>Protocol Π' </u>

Input: [w], $[s^{(1)}]$, ..., $[s^{(d)}]$

- 1. Locally compute $\llbracket s \rrbracket = \llbracket s_1 \rrbracket \otimes \cdots \otimes \llbracket s_d \rrbracket$
- 2. Locally compute $[[y_{j^*}]] = \sum_{j=1}^r [[s_j]] \cdot y_j$
- 3. Check that $\llbracket w \rrbracket$, $\llbracket y_{j^*} \rrbracket$ satisfy $f(w) = y_{j^*}$ using Π
- 4. Check that [s] is the sharing of a one-hot encoding

<u>Protocol Π'</u>

Input: [w], $[s^{(1)}]$, ..., $[s^{(d)}]$

- 1. Locally compute $\llbracket s \rrbracket = \llbracket s_1 \rrbracket \otimes \cdots \otimes \llbracket s_d \rrbracket$
- 2. Locally compute $[[y_{j^*}]] = \sum_{j=1}^r [[s_j]] \cdot y_j$

3. Check that $\llbracket w \rrbracket$, $\llbracket y_{j^*} \rrbracket$ satisfy $f(w) = y_{j^*}$ using Π

Simple MPC protocol

<u>Protocol Π'</u> Input: $[w], [s^{(1)}], ..., [s^{(d)}]$ 1. Locally compute $\llbracket s \rrbracket = \llbracket s_1 \rrbracket \otimes \cdots \otimes \llbracket s_d \rrbracket$ 2. Locally compute $[[y_{j^*}]] = \sum_{i=1}^r [[s_j]] \cdot y_j$ 3. Check that $\llbracket w \rrbracket$, $\llbracket y_{i^*} \rrbracket$ satisfy $f(w) = y_{i^*}$ using Π 4. Check that [[s]] is the sharing of a one-hot encoding \Re Simple $\blacksquare \Pi$ must be adapted to MPC protocol use $\llbracket y_{i^*} \rrbracket$ instead of y_{i^*}

<u>Protocol Π'</u> Input: $[w], [s^{(1)}], ..., [s^{(d)}]$ 1. Locally compute $\llbracket s \rrbracket = \llbracket s_1 \rrbracket \otimes \cdots \otimes \llbracket s_d \rrbracket$ 2. Locally compute $[[y_{j^*}]] = \sum_{i=1}^r [[s_j]] \cdot y_j$ 3. Check that $\llbracket w \rrbracket$, $\llbracket y_{i^*} \rrbracket$ satisfy $f(w) = y_{i^*}$ using Π 4. Check that [[s]] is the sharing of a one-hot encoding X Simple $! \Pi$ must be adapted to MPC protocol use $\llbracket y_{i^*} \rrbracket$ instead of y_{i^*} Sharing degrees increase

#users		2^3	2^6	2^8	2^{10}	2^{12}	2^{20}	Assumption	Security
Our scheme	2023	4.41	4.60	4.90	5.48	5.82	8.19	MQ over \mathbb{F}_{251}	NIST I
Our scheme	2023	4.30	4.33	4.37	4.45	4.60	5.62	MQ over \mathbb{F}_{256}	NIST I
Our scheme	2023	7.51	8.40	8.72	9.36	10.30	12.81	SD over \mathbb{F}_{251}	NIST I
Our scheme	2023	7.37	7.51	7.96	8.24	8.40	10.09	SD over \mathbb{F}_{256}	NIST I
Our scheme	2023	7.87	7.90	7.94	8.02	8.18	9.39	AES128	NIST I
Our scheme	2023	6.81	6.84	6.88	6.96	7.12	8.27	AES128-EM	NIST I
KKW [KKW18]	2018	_	250	_	-	456	-	LowMC	NIST V
GGHK GGHAK22	2021	-	-	-	56	-	-	LowMC	NIST V
Raptor LAZ19	2019	10	81	333	1290	5161	-	MSIS / MLWE	100 bit
$EZSLL EZS^+19$	2019	19	31	-	-	148	-	MSIS / MLWE	NIST II
Falafi BKP20	2020	30	32	-	-	35	-	MSIS / MLWE	NIST I
Calamari [BKP20]	2020	5	8	-	-	14	-	CSIDH	128 bit
LESS $[BBN^+22]$	2022	11	14	-	-	20	-	Code Equiv.	128 bit
MRr-DSS [BESV22]	2022	27	36	64	145	422	-	MinRank	NIST I

Application to MQ, SD, AES

#users		2^3	2^6	2^8	2^{10}	2^{12}	2^{20}	Assumption	Security
Our scheme	2023	4.41	4.60	4.90	5.48	5.82	8.19	MQ over \mathbb{F}_{251}	NIST I
Our scheme	2023	4.30	4.33	4.37	4.45	4.60	5.62	MQ over \mathbb{F}_{256}	NIST I
Our scheme	2023	7.51	8.40	8.72	9.36	10.30	12.81	SD over \mathbb{F}_{251}	NIST I
Our scheme	2023	7.37	7.51	7.96	8.24	8.40	10.09	SD over \mathbb{F}_{256}	NIST I
Our scheme	2023	7.87	7.90	7.94	8.02	8.18	9.39	AES128	NIST I
Our scheme	2023	6.81	6.84	6.88	6.96	7.12	8.27	AES128-EM	NIST I
KKW [KKW18]	2018	-	250	-	-	456	-	LowMC	NIST V
GGHK [GGHAK22]	2021	-	-	-	56	-	-	LowMC	NIST V
Raptor [LAZ19]	2019	10	81	333	1290	5161	-	MSIS / MLWE	100 bit
$EZSLL [EZS^+19]$	2019	19	31	-	-	148	-	MSIS / MLWE	NIST II
Falafi BKP20	2020	30	32	-	-	35	-	MSIS / MLWE	NIST I
Calamari [BKP20]	2020	5	8	-	-	14	-	CSIDH	$128 \mathrm{bit}$
LESS $[BBN^+22]$	2022	11	14	-	-	20	-	Code Equiv.	$128 \mathrm{bit}$
MRr-DSS [BESV22]	2022	27	36	64	145	422	-	MinRank	NIST I

Application to MQ, SD, AES

#users		2^3	2^6	2^8	2^{10}	2^{12}	2^{20}	Assumption	Security
Our scheme	2023	4.41	4.60	4.90	5.48	5.82	8.19	MQ over \mathbb{F}_{251}	NIST I
Our scheme	2023	4.30	4.33	4.37	4.45	4.60	5.62	MQ over \mathbb{F}_{256}	NIST I
Our scheme	2023	7.51	8.40	8.72	9.36	10.30	12.81	SD over \mathbb{F}_{251}	NIST I
Our scheme	2023	7.37	7.51	7.96	8.24	8.40	10.09	SD over \mathbb{F}_{256}	NIST I
Our scheme	2023	7.87	7.90	7.94	8.02	8.18	9.39	AES128	NIST I
Our scheme	2023	6.81	6.84	6.88	6.96	7.12	8.27	AES128-EM	NIST I
KKW [KKW18]	2018	-	250		-	456	-	LowMC	NIST V
GGHK [GGHAK22]	2021	-	-	-	56	-	-	LowMC	NIST V
Raptor [LAZ19]	2019	10	81	333	1290	5161	-	MSIS / MLWE	100 bit
$EZSLL [EZS^+19]$	2019	19	31	-	-	148	-	MSIS / MLWE	NIST II
Falafi [BKP20]	2020	30	32	-	-	35	-	MSIS / MLWE	NIST I
Calamari [BKP20]	2020	5	8	-	-	14	-	CSIDH	$128 \mathrm{bit}$
LESS $[BBN^+22]$	2022	11 🖌	14	-	-	20	-	Code Equiv.	$128 \mathrm{bit}$
MRr-DSS [BESV22]	2022	27	36	64	145	422	-	MinRank	NIST I

Size range: 5–13 kB for |ring|=2²⁰
Post-quantum ring signatures

Application to MQ, SD, AES

#users		2^3	2^6	2^8	2^{10}	2^{12}	2^{20}	Assumption	Security	
Our scheme	2023	4.41	4.60	4.90	5.48	5.82	8.19	MQ over \mathbb{F}_{251}	NIST I	
Our scheme	2023	4.30	4.33	4.37	4.45	4.60	5.62	MQ over \mathbb{F}_{256}	NIST I	
Our scheme	2023	7.51	8.40	8.72	9.36	10.30	12.81	SD over \mathbb{F}_{251}	NIST I	
Our scheme	2023	7.37	7.51	7.96	8.24	8.40	10.09	SD over \mathbb{F}_{256}	NIST I	
Our scheme	2023	7.87	7.90	7.94	8.02	8.18	9.39	AES128	NIST I	
Our scheme	2023	6.81	6.84	6.88	6.96	7.12	8.27	AES128-EM	NIST I	
KKW [KKW18]	2018	-	250		-	456	-	LowMC	NIST V	
GGHK GGHAK22	2021	-	-	-	56	-	-	LowMC	NIST V	
Raptor LAZ19	2019	10	81	333	1290	5161	-	MSIS / MLWE	100 bit	
$EZSLL$ EZS^+19	2019	19	31	-	-	148	-	MSIS / MLWE	NIST II	
Falafi BKP20	2020	30	32	-	-	35	-	MSIS / MLWE	NIST I	
Calamari [BKP20]	2020	5	8	-	-	14	-	CSIDH	128 bit	
LESS $[BBN+22]$	2022	11	14	-	-	20	-	Code Equiv.	128 bit	
MRr-DSS [BESV22]	2022	27	36	64	145	422	-	MinRank	NIST I	
Size range: 5–13 kB					Previous works:					
for $ ring =2^{20}$						\geq 14 kB for ring = 2^{10}				

no / slow implementations

Post-quantum ring signatures

Relation to other proof systems

Thank you!

References

[AGHJY23] Aguilar Melchor, Gama, Howe, Hülsing, Joseph, Yue: "The Return of the SDitH" (EUROCRYPT 2023)

[BBMORRRS24] Baum, Beullens, Mukherjee, Orsini, Ramacher, Rechberger, Roy, Scholl: "One Tree to Rule Them All: Optimizing GGM Trees and OWFs for Post-Quantum Signatures" <u>https://ia.cr/2024/490</u>

[BFGNR24] Bidoux, Feneuil, Gaborit, Neveu, Rivain. "Dual Support Decomposition in the Head: Shorter Signatures from Rank SD and MinRank" <u>https://ia.cr/2024/541</u>

[CDI05] Cramer, Damgard, Ishai: "Share conversion, pseudorandom secret-sharing and applications to secure computation" (TCC 2005)

[FR22] Thibauld Feneuil, Matthieu Rivain: "Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head" <u>https://ia.cr/2022/1407</u> (ASIACRYPT 2023)

[FR23] Thibauld Feneuil, Matthieu Rivain: "Threshold Computation in the Head: Improved Framework for Post-Quantum Signatures and Zero-Knowledge Arguments" <u>https://ia.cr/</u> 2023/1573

[ISN89] Ito, Saito, Nishizeki: "Secret sharing scheme realizing general access structure" (Electronics and Communications in Japan 1989)

[KKW18] Katz, Kolesnikov, Wang: "Improved Non-Interactive Zero Knowledge with Applications to Post-Quantum Signatures" (CCS 2018)