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Roadmap

•  MPC-in-the-Head paradigm 

•  TC-in-the-Head framework (and application to PQ signatures) 

🌲  TCitH with Merkle trees 

🌲  TCitH with GGM trees 

✖  TCitH using multiplication homomorphism 

📦  TCitH using packed secret sharing 

•  Application: post-quantum ring signatures 

•  Relation to other proof systems
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TCitH vs. standard MPCitH

 Similar soundness: ℓ = 1 ⇒
1
N

+ p 🤝



MPCitH 
+ seed trees 

+ hypercube [AGHHJY23]

TCitH 

Prover runtime Party emulations: log N +1    
Symmetric crypto: O(N)

Party emulations: 2    
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Speedups for MPCitH candidates

Additive MPCitH TCitH (GGM tree)

Traditional (ms) Hypercube (ms) TCitH (ms) Saving

Party emulations  
/ repetition

AIMer 4.53 3.22 3.22 -0 % 

Biscuit 17.71 4.65 4.24 -16 %

MIRA 384.26 20.11 9.89 -51 %

MiRitH-Ia 54.15 6.60 5.42 -18 %

MiRitH-Ib 89.50 8.66 6.66 -23 %

MQOM-31 96.41 11.27 8.74 -21 %

MQOM-251 44.11 7.56 5.97 -21 %

RYDE 12.41 4.65 4.65 -0 % 

SDitH-256 78.37 7.23 5.31 -27 %

SDitH-251 19.15 7.53 6.44 -14 %

21 + log2 NN

• Comparison based on a generic MPCitH library (     libmpcith) 

• Code for MPC protocols fetched from the submission packages



Speedups for MPCitH candidates

Additive MPCitH TCitH (GGM tree)

Traditional (ms) Hypercube (ms) TCitH (ms) Saving

Party emulations  
/ repetition

AIMer 4.53 3.22 3.22 -0 % 

Biscuit 17.71 4.65 4.24 -16 %

MIRA 384.26 20.11 9.89 -51 %

MiRitH-Ia 54.15 6.60 5.42 -18 %

MiRitH-Ib 89.50 8.66 6.66 -23 %

MQOM-31 96.41 11.27 8.74 -21 %

MQOM-251 44.11 7.56 5.97 -21 %

RYDE 12.41 4.65 4.65 -0 % 

SDitH-256 78.37 7.23 5.31 -27 %

SDitH-251 19.15 7.53 6.44 -14 %

21 + log2 NN

• Comparison based on a generic MPCitH library (     libmpcith) 

• Code for MPC protocols fetched from the submission packages

⚠  But only if |𝔽 | ≥ N



Speedups for MPCitH candidates

Additive MPCitH TCitH (GGM tree)

Traditional (ms) Hypercube (ms) TCitH (ms) Saving

Party emulations  
/ repetition

AIMer 4.53 3.22 3.22 -0 % 

Biscuit 17.71 4.65 4.24 -16 %

MIRA 384.26 20.11 9.89 -51 %

MiRitH-Ia 54.15 6.60 5.42 -18 %

MiRitH-Ib 89.50 8.66 6.66 -23 %

MQOM-31 96.41 11.27 8.74 -21 %

MQOM-251 44.11 7.56 5.97 -21 %

RYDE 12.41 4.65 4.65 -0 % 

SDitH-256 78.37 7.23 5.31 -27 %

SDitH-251 19.15 7.53 6.44 -14 %

21 + log2 NN

• Comparison based on a generic MPCitH library (     libmpcith) 

• Code for MPC protocols fetched from the submission packages

⚠  But only if |𝔽 | ≥ N

🛠   Party emulations = 1 + ⌈ log2 N
log2 |𝔽 | ⌉ =

2 if |𝔽 | ≥ N
⋮

1 + log2 N if |𝔽 | = 2



Speedups for MPCitH candidates

Additive MPCitH TCitH (GGM tree)

Traditional (ms) Hypercube (ms) TCitH (ms) Saving

Party emulations  
/ repetition

AIMer 4.53 3.22 3.22 -0 % 

Biscuit 17.71 4.65 4.24 -16 %

MIRA 384.26 20.11 9.89 -51 %

MiRitH-Ia 54.15 6.60 5.42 -18 %

MiRitH-Ib 89.50 8.66 6.66 -23 %

MQOM-31 96.41 11.27 8.74 -21 %

MQOM-251 44.11 7.56 5.97 -21 %

RYDE 12.41 4.65 4.65 -0 % 

SDitH-256 78.37 7.23 5.31 -27 %

SDitH-251 19.15 7.53 6.44 -14 %

21 + log2 NN

• Comparison based on a generic MPCitH library (     libmpcith) 

• Code for MPC protocols fetched from the submission packages

⚠  But only if |𝔽 | ≥ N

🛠   Party emulations = 1 + ⌈ log2 N
log2 |𝔽 | ⌉ =

2 if |𝔽 | ≥ N
⋮

1 + log2 N if |𝔽 | = 2



Speedups for MPCitH candidates

Additive MPCitH TCitH (GGM tree)

Traditional (ms) Hypercube (ms) TCitH (ms) Saving

Party emulations  
/ repetition

AIMer 4.53 3.22 3.22 -0 % 

Biscuit 17.71 4.65 4.24 -16 %

MIRA 384.26 20.11 9.89 -51 %

MiRitH-Ia 54.15 6.60 5.42 -18 %

MiRitH-Ib 89.50 8.66 6.66 -23 %

MQOM-31 96.41 11.27 8.74 -21 %

MQOM-251 44.11 7.56 5.97 -21 %

RYDE 12.41 4.65 4.65 -0 % 

SDitH-256 78.37 7.23 5.31 -27 %

SDitH-251 19.15 7.53 6.44 -14 %

1 + ⌈ log2 N
log2 |𝔽 | ⌉1 + log2 NN

• Comparison based on a generic MPCitH library (     libmpcith) 

• Code for MPC protocols fetched from the submission packages



Using multiplication 
homomorphism  

& packed secret sharing



Using multiplication homomorphism

• Shamir’s secret sharing satisfies: 

 

• Simple protocol to verify polynomial constraints 

‣  valid     

‣ parties locally compute 

       

[[x]](d) ⋅ [[y]](d) = [[x ⋅ y]](2d)

w ⇔ f1(w) = 0, …, fm(w) = 0

[[α]] = [[v]] +
m

∑
j=1

γj ⋅ fj([[w]])
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Here:



Shorter signatures for MPCitH-based candidates

Original Size Our Variant Saving

Biscuit 4 758 B 4 048 B -15 %

MIRA 5 640 B 5 340 B -5 %

MiRitH-Ia 5 665 B 4 694 B -17 %

MiRitH-Ib 6 298 B 5 245 B -17 %

MQOM-31 6 328 B 4 027 B -37 %

MQOM-251 6 575 B 4 257 B -35 %

RYDE 5 956 B 5 281 B -11 % 

SDitH 8 241 B 7 335 B -27 %

MQ over GF(4) 8 609 B 3 858 B -55 %

SD over GF(2) 11 160 B 7 354 B -34 %

SD over GF(2) 12 066 B 6 974 B -42 %

* N = 256



Shorter signatures for MPCitH-based candidates

Original Size Our Variant Saving

Biscuit 4 758 B 3 431 B

MIRA 5 640 B 4 314 B

MiRitH-Ia 5 665 B 3 873 B

MiRitH-Ib 6 298 B 4 250 B

MQOM-31 6 328 B 3 567 B

MQOM-251 6 575 B 3 418 B

RYDE 5 956 B 4 274 B

SDitH 8 241 B 5 673 B

MQ over GF(4) 8 609 B 3 301 B

SD over GF(2) 11 160 B 7 354 B -34 %

SD over GF(2) 12 066 B 6 974 B -42 %

* N = 256 * N = 2048



Shorter signatures for MPCitH-based candidates

Two very recent works : 

• Baum, Beullens, Mukherjee, Orsini, Ramacher, Rechberger, Roy, 
Scholl. One Tree to Rule Them All: Optimizing GGM Trees and 
OWFs for Post-Quantum Signatures. https://ia.cr/2024/490 

‣ General techniques to reduce the size of GGM trees 

‣ Apply to TCitH-GGM (gain of ~500 B at 128-bit security) 

• Bidoux, Feneuil, Gaborit, Neveu, Rivain. Dual Support 
Decomposition in the Head: Shorter Signatures from Rank SD and 
MinRank. https://ia.cr/2024/541 

‣ New MPC protocols for TCitH / VOLEitH signatures based on 
MinRank & Rank SD

https://ia.cr/2024/490
https://ia.cr/2024/541


Using packed secret sharing

• Shamir’s secret sharing can be packed 

‣  

‣  

‣  

• sharing of  

•  sharing of   

• Packed sharing & Merkle trees   witness size by  

    interesting for statements with “medium size” witness 

• E.g. an ISIS statement    with   

P(ω1) = x1 , … , P(ωs) = xs

P(ωs+1) = r1 , … , P(ωs+ℓ) = rℓ

[[x]]1 = P(e1) , … , [[x]]N = P(eN)

[[x]] + [[y]] = (x1, …, xs) + (y1, …, ys)

[[x]] ⋅ [[y]] = (x1, …, xs) ∘ (y1, …, ys)

≈ ÷ s
⇒

⃗t = A ⋅ ⃗e ∥ ⃗e ∥∞≤ β
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MPCitH with additive 
sharing, e.g. 

[KKW18,BN20,DOT21]

Original TCitH 
framework

Application of Shamir’s 
secret sharing with Merkle 

tree commitments 

General TCitH 
framework

                  + GGM variant 
              + packed secret sharing 
         + non-linear MPC protocols 
 + degree-enforcing commitment

VOLE-in-the-Head 

[BBDG+23]
Ligero  

[AHIV17,AHIV23]

VOLEitH = TCitH-GGM 
with  and large 

field embedding  
s = ℓ = 1

TCitH-MT with  = 
optimised version of the 
Ligero concrete scheme

ΠLigero



Thank you!
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