Threshold Computation in the Head

Matthieu Rivain

New Trends in PQC Workshop
Oxford, 11 June, 2024

CRYPTOEXPERTS ${ }^{\text {g }}$
We innovate to secure your business

Threshold Computation in the Head

Joint work with Thibauld Feneuil

https://ia.cr/2022/1407
Original TCitH
framework
(Asiacrypt'23)

https://ia.cr/2023/1573
Improved TCitH framework
(preprint)

Roadmap

- MPC-in-the-Head paradigm
- TC-in-the-Head framework (and application to PO signatures)
(TCitH with Merkle trees
(TCitH with GGM trees
\mathbf{x} TCitH using multiplication homomorphism
1 TCitH using packed secret sharing
- Application: post-quantum ring signatures
- Relation to other proof systems

MPC-in-the-Head paradigm

MPC-in-the-Head paradigm

One-way function
$F: x \mapsto y$
E.g. AES, MQ system, Syndrome decoding

MPC-in-the-Head paradigm

One-way function

$$
F: x \mapsto y
$$

E.g. AES, MO system, Syndrome decoding

Multiparty computation (MPC)

Input sharing $\llbracket x \rrbracket$ Joint evaluation of:
$g(x)= \begin{cases}\text { Accept } & \text { if } F(x)=y \\ \text { Reject } & \text { if } F(x) \neq y\end{cases}$

MPC-in-the-Head paradigm

One-way function

$$
F: x \mapsto y
$$

E.g. AES, MO system, Syndrome decoding

Multiparty computation (MPC)

Input sharing $\llbracket x \rrbracket$ Joint evaluation of: $g(x)= \begin{cases}\text { Accept } & \text { if } F(x)=y \\ \text { Reject } & \text { if } F(x) \neq y\end{cases}$

Zero-knowledge proof

MPC-in-the-Head paradigm

One-way function

$$
F: x \mapsto y
$$

E.g. AES, MO system, Syndrome decoding

Multiparty computation (MPC)

Input sharing $\llbracket x \rrbracket$ Joint evaluation of:
$g(x)= \begin{cases}\text { Accept } & \text { if } F(x)=y \\ \text { Reject } & \text { if } F(x) \neq y\end{cases}$

Zero-knowledge proof

MPC-in-the-Head paradigm

One-way function

$$
F: x \mapsto y
$$

E.g. AES, MO system, Syndrome decoding

Multiparty computation (MPC)

MPC-in-the-Head transform
Zero-knowledge proof

MPC model

- Jointly compute

$$
g(x)= \begin{cases}\text { Accept } & \text { if } F(x)=y \\ \text { Reject } & \text { if } F(x) \neq y\end{cases}
$$

- ℓ-private
- Semi-honest model
$\llbracket x \rrbracket$ is a linear secret sharing of x

MPC model

- Jointly compute

$$
g(x)= \begin{cases}\text { Accept } & \text { if } F(x)=y \\ \text { Reject } & \text { if } F(x) \neq y\end{cases}
$$

- ℓ-private
- Semi-honest model
- Broadcast model
$\llbracket x \rrbracket$ is a linear secret sharing of x

MPCitH transform

Prover
Verifier

MPCitH transform

(1)

Generate and commit shares $\llbracket x \rrbracket=\left(\llbracket x \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}\right)$

Prover
Verifier

MPCitH transform

Prover

MPCitH transform

(3) Choose a random set of parties $I \subseteq\{1, \ldots, N\}$, s.t. $|I|=\ell$.

Prover

MPCitH transform

(1) Generate and commit shares

$$
\llbracket x \rrbracket=\left(\llbracket x \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}\right)
$$

(2) Run MPC in their head

(4) Open parties in I

Prover

Verifier

MPCitH transform

(1) Generate and commit shares

$$
\llbracket x \rrbracket=\left(\llbracket x \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}\right)
$$

(2) Run MPC in their head

(4) Open parties in I

Prover

Verifier

MPCitH transform: with additive sharing

Prover
Verifier

MPCitH transform: with additive sharing

(1) Generate and commit shares
$\llbracket x \rrbracket=\left(\llbracket x \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}\right)$

Generated using a GGM seed tree [KKW18]:

MPCitH transform: with additive sharing

MPCitH transform: with additive sharing

MPCitH transform: with additive sharing

Verifier

MPCitH transform: with additive sharing

(1) Generate and commit shares
$\llbracket x \rrbracket=\left(\llbracket x \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}\right)$
$\operatorname{Com}^{\rho_{1}}\left(\llbracket x \rrbracket_{1}\right)$
$\operatorname{Com}^{\rho_{N}}\left(\llbracket x \rrbracket_{N}\right)$

Only $\log _{2} N$ seeds to be revealed:

TC-in-the-Head framework (with Merkle trees)

Threshold Computation in the Head

(1) Generate and commit shares

(4) Open parties in I

Prover

Verifier

Threshold Computation in the Head

Threshold Computation in the Head

Threshold Computation in the Head

Threshold Computation in the Head

(1) Generate and commit shares
$\llbracket x \rrbracket=\left(\llbracket x \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}\right)$

$\operatorname{Com}^{\rho_{1}}\left(\llbracket x \rrbracket_{1}\right)$
$\operatorname{Com}^{\rho_{N}}\left(\llbracket x \rrbracket_{N}\right)$

Committed using a Merkle tree:

Threshold Computation in the Head

Threshold Computation in the Head

Only $\log _{2} N$ labels to be revealed:

Soundness

$$
\begin{aligned}
p & =\text { "false positive probability" } \\
& =P[\text { MPC protocol accepts } \llbracket x \rrbracket \text { while } f(x) \neq y]
\end{aligned}
$$

Soundness

$$
\begin{aligned}
p & =\text { "false positive probability" } \\
& =P[\text { MPC protocol accepts } \llbracket x \rrbracket \text { while } f(x) \neq y]
\end{aligned}
$$

Soundness error of standard MPCitH

Soundness

$$
\begin{aligned}
p & =\text { "false positive probability" } \\
& =P[\text { MPC protocol accepts } \llbracket x \rrbracket \text { while } f(x) \neq y]
\end{aligned}
$$

Soundness

$$
\begin{aligned}
p & =\text { "false positive probability" } \\
& =P[\text { MPC protocol accepts } \llbracket x \rrbracket \text { while } f(x) \neq y]
\end{aligned}
$$

Soundness

$$
\frac{1}{\binom{N}{\ell}}+p\left(\frac{\ell(N-\ell)}{\ell+1}\right. \text { Why? }
$$

Soundness

$$
\frac{1}{\binom{N}{\ell}}+p\left(\frac{\ell(N-\ell)}{\ell+1}\right. \text { Why? }
$$

- Prover can commit invalid sharings
- Let $\llbracket x \rrbracket^{(J)}=$ sharing interpolating $\left(\llbracket x \rrbracket_{i}\right)_{i \in J}$
- Many different $\llbracket x \rrbracket^{(J)} \Rightarrow$ many possible false positives

Soundness

$$
\frac{1}{\binom{N}{\ell}}+p\left(\frac{l(N-\ell)}{\ell+1}\right. \text { Why? }
$$

- Prover can commit invalid sharings
- Let $\llbracket x \rrbracket^{(J)}=$ sharing interpolating $\left(\llbracket x \rrbracket_{i}\right)_{i \in J}$
- Many different $\llbracket x \rrbracket^{(J)} \Rightarrow$ many possible false positives
- "Degree-enforcing commitment scheme"
- Verifier \rightarrow Prover : random $\left\{\gamma_{j}\right\}$
- Prover \rightarrow Verifier: $\llbracket \xi \rrbracket=\Sigma_{j} \gamma_{i} \cdot \llbracket x_{j} \rrbracket$
- Before MPC computation

Soundness

$$
\frac{1}{\binom{N}{\ell}}+p\left(\frac{\ell(N-\ell)}{\ell+1}\right. \text { Why? }
$$

- Prover can commit invalid sharings
- Let $\llbracket x \rrbracket^{(J)}=$ sharing interpolating $\left(\llbracket x \rrbracket_{i}\right)_{i \in J}$
- Many different $\llbracket x \rrbracket^{(J)} \Rightarrow$ many possible false positives
- "Degree-enforcing commitment scheme"
- Verifier \rightarrow Prover : random $\left\{\gamma_{j}\right\}$
- Prover \rightarrow Verifier: $\llbracket \xi \rrbracket=\Sigma_{j} \gamma_{i} \cdot \llbracket x_{j} \rrbracket$
- Before MPC computation

TCitH vs. standard MPCitH

$$
\ell=1 \Rightarrow \text { Similar soundness: } \frac{1}{N}+p
$$

TCitH vs. standard MPCitH

$$
\ell=1 \Rightarrow \text { Similar soundness: } \frac{1}{N}+p
$$

	MPCitH + seed trees + hypercube [AGHHJY23]	TCitH $\ell=1$

TCitH vs. standard MPCitH

$$
\ell=1 \Rightarrow \text { Similar soundness: } \frac{1}{N}+p
$$

	MPCitH + seed trees +hypercube [AGHHJY23]	TCitH $\ell=1$
Prover runtime	Party emulations log $N+1$ Symmetric crypto: $O(N)$	Party emulations 2 Symmetric crypto: $O(N)$

TCitH vs. standard MPCitH

$$
\ell=1 \Rightarrow \text { Similar soundness: } \frac{1}{N}+p
$$

	MPCitH + seed trees + hypercube [AGHHJY23]	TCitH $\ell=1$
Prover runtime	Party emulations: $\log N+1$ Symmetric crypto: $O(N)$	Party emulations: 2 Symmetric crypto: $O(N)$
Verifier runtime	Party emulations $\log N$ Symmetric crypto: $O(N)$	Party emulations 1 Symmetric cryptr: O(log $N)$

TCitH vs. standard MPCitH

$$
\ell=1 \Rightarrow \text { Similar soundness: } \frac{1}{N}+p
$$

	MPCitH + seed trees hypercube [AGHHJY23]	TCitH $\ell=1$
Prover runtime	Party emulations: $\log N+1$ Symmetric crypto: $O(N)$	Party emulations: 2 Symmetric crypto: $O(N)$
Verifier runtime	Party emulations: log N Symmetric crypto: $O(N)$	Party emulations: 1 Symmetric crypto: O(log $N)$)

TCitH vs. standard MPCitH

$$
\ell=1 \Rightarrow \text { Similar soundness: } \frac{1}{N}+p
$$

	$\begin{gathered} \text { MPCitH } \\ + \text { seed trees } \\ + \text { hypercube [AGHHJY23] } \end{gathered}$	$\begin{aligned} & \text { TCitH } \\ & \ell=1 \end{aligned}$
Prover runtime	Party emulations: $\log N+1$ Symmetric crypto: $\mathrm{O}(\mathrm{N})$	Party emulations: 2 Symmetric crypto: O(N)
Verifier runtime	Party emulations: $\log N$ Symmetric crypto: O(N)	Party emulations: 1 Symmetric crypto: $O(\log N)$
Size of tree		

TCitH vs. standard MPCitH

$$
\ell=1 \Rightarrow \text { Similar soundness: } \frac{1}{N}+p
$$

	MPCitH + seed trees + hypercube [AGHHJY23]	TCitH $\ell=1$
Prover runtime	Party emulations: $\log N+1$ Symmetric crypto: $O(N)$	Party emulations: 2 Symmetric crypto: $O(N)$
Verifier runtime	Party emulations: log N Symmetric crypto: $O(N)$	Party emulations: 1 Symmetric crypto: $O(\log N)$
Size of tree	128-bit security: $\sim 2 \mathrm{~KB}$ 256 -bit security: $\sim 8 \mathrm{~KB}$	128-bit security: $\sim 4 \mathrm{~KB}$ 256 -bit security: $\sim 16 \mathrm{~KB}$
Number of		
parties		$N \leq\|\mathbb{F}\|$

TCitH vs. standard MPCitH

$$
\ell=1 \Rightarrow \text { Similar soundness: } \frac{1}{N}+p
$$

	MPCitH + seed trees hypercube [AGHHJY23]	TCitH $\ell=1$
Prover runtime	Party emulations: $\log N+1$ Symmetric crypto: $O(N)$	Party emulations: 2 Symmetric crypto: $O(N)$
Verifier runtime	Party emulations: log N Symmetric crypto: $O(N)$	Party emulations: 1 Symmetric crypto: O(log $N)$
Size of tree		
Getting rid of these limitations		
\rightarrow TCitH with GGM tree		

TC-in-the-Head framework with GGM trees

TCitH with GGM trees

Step 1: Generate a
replicated secret sharing [ISN89]

$$
x=r_{1}+r_{2}+\cdots+r_{N}
$$

TCitH with GGM trees

Step 1: Generate a
replicated secret sharing [ISN89]

$$
x=r_{1}+r_{2}+\cdots+r_{N}
$$

TCitH with GGM trees

Step 1: Generate a replicated secret sharing [ISN89]

$$
x=r_{1}+r_{2}+\cdots+r_{N}
$$

TCitH with GGM trees

Step 1: Generate a replicated secret sharing [ISN89]

$$
x=r_{1}+r_{2}+\cdots+r_{N}
$$

Step 2: Convert it into a

 Shamir's secret sharing [CDI05]Let $P(X)=\Delta_{x}+\sum_{j} r_{j} P_{j}(X)$
with $P_{j}(X)=1-\left(1 / e_{j}\right) \cdot X$
$\vee \llbracket x \rrbracket=\left(P\left(e_{1}\right), \ldots, P\left(e_{N}\right)\right)$ is a
valid Shamir's secret sharing of x
$03 \square \rightarrow$ Party 1
$\square ன \square \rightarrow$ Party 2
$\square \square \rightarrow \operatorname{Party} N$

TCitH with GGM trees

Step 1：Generate a replicated secret sharing［ISN89］

$$
x=r_{1}+r_{2}+\cdots+r_{N}
$$

Party i can compute $\square 刃 \square \rightarrow$ Party 2 \vdots（
ロロロロロロロロロロロロロロロ 4 Party N
$\llbracket x \rrbracket_{i}=\sum_{j \neq i} r_{j} P_{j}\left(e_{i}\right)$
（since $P_{i}\left(e_{i}\right)=0$ ）

TCitH with GGM trees

Step 1：Generate a replicated secret sharing［ISN89］

$$
x=r_{1}+r_{2}+\cdots+r_{N}
$$

Step 2：Convert it into a

 Shamir＇s secret sharing［CDI05］Let $P(X)=\Delta_{x}+\sum_{j} r_{j} P_{j}(X)$ with $P_{j}(X)=1-\left(1 / e_{j}\right) \cdot X$

८ $\llbracket x \rrbracket=\left(P\left(e_{1}\right), \ldots, P\left(e_{N}\right)\right)$ is a valid Shamir＇s secret sharing of x
$r_{1}+r_{2}+\cdots \quad \cdots+r_{N}=x+\Delta_{x}$ か \square Мタロロロロロロロロロロロロロロ \rightarrow Party 2 ！
$\square \square \rightarrow \operatorname{Party} N$

Party i can compute
$\llbracket x \rrbracket_{i}=\sum_{j \neq i} r_{j} P_{j}\left(e_{i}\right)$
（since $\left.P_{i}\left(e_{i}\right)=0\right)$

TCitH with GGM trees

Step 1：Generate a replicated secret sharing［ISN89］

$$
x=r_{1}+r_{2}+\cdots+r_{N}
$$

Party i can compute ロ令ロロロロロロロロロロロロロロ \rightarrow Party 2 \vdots ！
ロロロロロロロロロロロロロロロ 4 Party N
$\llbracket x \rrbracket_{i}=\sum_{j \neq i} r_{j} P_{j}\left(e_{i}\right)$
（since $P_{i}\left(e_{i}\right)=0$ ）
x Can be
adapted to $\ell>1$

TCitH with GGM trees

Step 1：Generate a replicated secret sharing［ISN89］

$$
x=r_{1}+r_{2}+\cdots+r_{N}
$$

Step 2：Convert it into a

 Shamir＇s secret sharing［CDIO5］Let $P(X)=\Delta_{x}+\sum_{j} r_{j} P_{j}(X)$ with $P_{j}(X)=1-\left(1 / e_{j}\right) \cdot X$
$\bigcirc \llbracket x \rrbracket=\left(P\left(e_{1}\right), \ldots, P\left(e_{N}\right)\right)$ is a valid Shamir＇s secret sharing of x かっロロロロロロロロロロロロロロ \rightarrow Party 1 ロ\％ロロロロロロロロロロロロロロ \rightarrow Party 2 ：
ロロロロロロロロロロロロロロロ \rightarrow Party N
Party i can compute $\llbracket x \rrbracket_{i}=\sum_{j \neq i} r_{j} P_{j}\left(e_{i}\right)$
（since $\left.P_{i}\left(e_{i}\right)=0\right)$
＊Can be adapted to $\ell>1$
（ Size of GGM tree

TCitH with GGM trees

Step 1：Generate a replicated secret sharing［ISN89］

$$
x=r_{1}+r_{2}+\cdots+r_{N}
$$

 かっロロロロロロロロロロロロロロ \rightarrow Party 1 ロ\％ロロロロロロロロロロロロロロ \rightarrow Party 2 ：
ロロロロロロロロロロロロロロロ \rightarrow Party N

Step 2：Convert it into a

 Shamir＇s secret sharing［CDI05］Let $P(X)=\Delta_{x}+\sum_{j} r_{j} P_{j}(X)$ with $P_{j}(X)=1-\left(1 / e_{j}\right) \cdot X$
$8 \llbracket x \rrbracket=\left(P\left(e_{1}\right), \ldots, P\left(e_{N}\right)\right)$ is a valid Shamir＇s secret sharing of x

Party i can compute $\llbracket x \rrbracket_{i}=\sum_{j \neq i} r_{j} P_{j}\left(e_{i}\right)$
$\left(\right.$ since $\left.P_{i}\left(e_{i}\right)=0\right)$
x Can be adapted to $\ell>1$
（ Size of GGM tree
（3）Good soundness （only valid sharings）

TCitH with GGM trees

Step 1：Generate a replicated secret sharing［ISN89］

$$
x=r_{1}+r_{2}+\cdots+r_{N}
$$

Step 2：Convert it into a

 Shamir＇s secret sharing［CDIO5］Let $P(X)=\Delta_{x}+\sum_{j} r_{j} P_{j}(X)$ with $P_{j}(X)=1-\left(1 / e_{j}\right) \cdot X$
$\bigcirc \llbracket x \rrbracket=\left(P\left(e_{1}\right), \ldots, P\left(e_{N}\right)\right)$ is a valid Shamir＇s secret sharing of x かっロロロロロロロロロロロロロロ \rightarrow Party 1 \square がロロロロロロロロロロロロロロ \rightarrow Party 2 ：
$\square \square \$ \rightarrow$ Party N
Party i can compute $\llbracket x \rrbracket_{i}=\sum_{j \neq i} r_{j} P_{j}\left(e_{i}\right)$
（since $\left.P_{i}\left(e_{i}\right)=0\right)$
x Can be adapted to $\ell>1$
（ Size of GGM tree
（3）Good soundness （only valid sharings）

Qf Loose fast verification

Speedups for MPCitH candidates

	Additive MPCitH		TCitH (GGM tree)	
	Traditional (ms)	Hypercube (ms)	TCitH (ms)	Saving
Party emulations / repetition	N	$1+\log _{2} N$	2	

Speedups for MPCitH candidates

	Additive MPCitH		TCitH (GGM tree)	
	Traditional (ms)	Hypercube (ms)	TCitH (ms)	Saving
Party emulations / repetition	N	$1+\log _{2} N$	2	

Speedups for MPCitH candidates

	Additive MPCitH		TCitH (GGM tree)	
	Traditional (ms)	Hypercube (ms)	TCitH (ms)	Saving
Party emulations / repetition	N	$1+\log _{2} N$	2	

Ky Party emulations $=1+\left\lceil\frac{\log _{2} N}{\log _{2}|\mathbb{F}|}\right\rceil$

Speedups for MPCitH candidates

	Additive MPCitH		TCitH (GGM tree)	
	Traditional (ms)	Hypercube (ms)	TCitH (ms)	Saving
Party emulations / repetition	N	$1+\log _{2} N$	2	

$$
\mathcal{F} \text { Party emulations }=1+\left\lceil\frac{\log _{2} N}{\log _{2}|\mathbb{F}|}\right\rceil= \begin{cases}2 & \text { if }|\mathbb{F}| \geq N \\ 1+\log _{2} N & \text { if }|\mathbb{F}|=2\end{cases}
$$

Speedups for MPCitH candidates

	Additive MPCitH		TCitH (GGM tree)	
	Traditional (ms)	Hypercube (ms)	TCitH (ms)	Saving
Party emulations / repetition	N	$1+\log _{2} N$	$1+\left[\frac{\log _{2} N}{\log _{2}\|\mathbb{F}\|}\right]$	
AlMer	4.53	3.22	3.22	-0%
Biscuit	17.71	4.65	4.24	-16%
MIRA	384.26	20.11	9.89	-51%
MiRitH-la	54.15	6.60	5.42	-18%
MiRitH-lb	89.50	8.66	6.66	-23%
MOOM-31	96.41	11.27	8.74	-21%
MQOM-251	44.11	7.56	5.97	-21%
RYDE	12.41	4.65	4.65	-0%
SDitH-256	78.37	7.23	5.31	-27%
SDitH-251	19.15	7.53	6.44	-14%

- Comparison based on a generic MPCitH library ($\mathbf{(l i b m p c i t h) ~}$
- Code for MPC protocols fetched from the submission packages

Using multiplication homomorphism

\& packed secret sharing

Using multiplication homomorphism

- Shamir's secret sharing satisfies:

$$
\llbracket x \rrbracket^{(d)} \cdot \llbracket y \rrbracket^{(d)}=\llbracket x \cdot y \rrbracket^{(2 d)}
$$

Using multiplication homomorphism

- Shamir's secret sharing satisfies:

$$
\llbracket x \rrbracket^{(d)} \cdot \llbracket y \rrbracket^{(d)}=\llbracket x \cdot y \rrbracket^{(2 d)}
$$

- Simple protocol to verify polynomial constraints
- w valid $\Leftrightarrow f_{1}(w)=0, \ldots, f_{m}(w)=0$

Using multiplication homomorphism

- Shamir's secret sharing satisfies:

$$
\llbracket x \rrbracket^{(d)} \cdot \llbracket y \rrbracket^{(d)}=\llbracket x \cdot y \rrbracket^{(2 d)}
$$

- Simple protocol to verify polynomial constraints
- w valid $\Leftrightarrow f_{1}(w)=0, \ldots, f_{m}(w)=0$
- parties locally compute

$$
\llbracket \alpha \rrbracket=\llbracket v \rrbracket+\sum_{j=1}^{m} \gamma_{j} \cdot f_{j}(\llbracket w \rrbracket)
$$

Using multiplication homomorphism

- Shamir's secret sharing satisfies:

$$
\llbracket x \rrbracket^{(d)} \cdot \llbracket y \rrbracket^{(d)}=\llbracket x \cdot y \rrbracket^{(2 d)}
$$

- Simple protocol to verify polynomial constraints
- w valid $\Leftrightarrow f_{1}(w)=0, \ldots, f_{m}(w)=0$
- parties locally compute

$$
\llbracket \alpha \rrbracket=\llbracket v \rrbracket+\sum_{j=1}^{m} \gamma_{j} f_{j}(\llbracket w \rrbracket)
$$

Using multiplication homomorphism

- Shamir's secret sharing satisfies:

$$
\llbracket x \rrbracket^{(d)} \cdot \llbracket y \rrbracket^{(d)}=\llbracket x \cdot y \rrbracket^{(2 d)}
$$

- Simple protocol to verify polynomial constraints
- w valid $\Leftrightarrow f_{1}(w)=0, \ldots, f_{m}(w)=0$
- parties locally compute

$$
\llbracket \alpha \rrbracket=\underset{\substack{\llbracket v \rrbracket \\ \text { pre-committed } \\ \text { sharing of } 0}}{m}+\gamma_{j=1}^{m} \gamma_{j}(\llbracket w \rrbracket)
$$

Using multiplication homomorphism

- Shamir's secret sharing satisfies:

$$
\llbracket x \rrbracket^{(d)} \cdot \llbracket y \rrbracket^{(d)}=\llbracket x \cdot y \rrbracket^{(2 d)}
$$

- Simple protocol to verify polynomial constraints
- w valid $\Leftrightarrow f_{1}(w)=0, \ldots, f_{m}(w)=0$
- parties locally compute

check $\alpha=0$
false positive proba $1 /|\mathbb{F}|$
pre-committed sharing of 0
randomness from the verifier

Using multiplication homomorphism

- Shamir's secret sharing satisfies:

$$
\llbracket x \rrbracket^{(d)} \cdot \llbracket y \rrbracket^{(d)}=\llbracket x \cdot y \rrbracket^{(2 d)}
$$

- Simple protocol to verify polynomial constraints
- w valid $\Leftrightarrow f_{1}(w)=0, \ldots, f_{m}(w)=0$
- parties locally compute

Soundness error
check $\alpha=0$
false positive proba $1 /|\mathbb{F}|$
pre-committed sharing of 0
randomness from the verifier

Using multiplication homomorphism

- Shamir's secret sharing satisfies:

$$
\llbracket x \rrbracket^{(d)} \cdot \llbracket y \rrbracket^{(d)}=\llbracket x \cdot y \rrbracket^{(2 d)}
$$

- Simple protocol to verify polynomial constraints
- w valid $\Leftrightarrow f_{1}(w)=0, \ldots, f_{m}(w)=0$
- parties locally compute

Shorter signatures for MPCitH-based candidates

	Original Size	Our Variant	Saving
Biscuit	4758 B	4048 B	-15%
MIRA	5640 B	5340 B	-5%
MiRitH-la	5665 B	4694 B	-17%
MiRitH-Ib	6298 B	5245 B	-17%
MQOM-31	6328 B	4027 B	-37%
MQOM-251	6575 B	4257 B	-35%
RYDE	5956 B	5281 B	-11%
SDitH	8241 B	7335 B	-27%

MQ over GF(4)	8609 B	3858 B	-55%
SD over GF(2)	11160 B	7354 B	-34%
SD over GF(2)	12066 B	6974 B	-42%

$$
\star N=256
$$

Shorter signatures for MPCitH-based candidates

	Original Size	Our Variant	Saving
Biscuit	4758 B	3431 B	
MIRA	5640 B	4314 B	
MiRitH-la	5665 B	3873 B	
MiRitH-Ib	6298 B	4250 B	
MQOM-31	6328 B	3567 B	
MQOM-251	6575 B	3418 B	
RYDE	5956 B	4274 B	
SDitH	8241 B	5673 B	

MQ over GF(4)	8609 B	3301 B	
SD over GF(2)	11160 B	7354 B	-34%
SD over GF(2)	12066 B	6974 B	-42%

$$
\star N=256 \quad * N=2048
$$

Shorter signatures for MPCitH-based candidates

Two very recent works:

- Baum, Beullens, Mukherjee, Orsini, Ramacher, Rechberger, Roy, Scholl. One Tree to Rule Them All: Optimizing GGM Trees and OWFs for Post-Quantum Signatures. https://ia.cr/2024/490
- General techniques to reduce the size of GGM trees
- Apply to TCitH-GGM (gain of ~ 500 B at 128-bit security)
- Bidoux, Feneuil, Gaborit, Neveu, Rivain. Dual Support Decomposition in the Head: Shorter Signatures from Rank SD and MinRank. https://ia.cr/2024/541
- New MPC protocols for TCitH / VOLEitH signatures based on MinRank \& Rank SD

Using packed secret sharing

- Shamir's secret sharing can be packed
- $P\left(\omega_{1}\right)=x_{1}, \quad \ldots, \quad P\left(\omega_{s}\right)=x_{s}$
- $P\left(\omega_{s+1}\right)=r_{1}, \ldots, P\left(\omega_{s+\ell}\right)=r_{\ell}$
$-\llbracket x \rrbracket_{1}=P\left(e_{1}\right), \ldots, \llbracket x \rrbracket_{N}=P\left(e_{N}\right)$

Using packed secret sharing

- Shamir's secret sharing can be packed
- $P\left(\omega_{1}\right)=x_{1}, \quad \ldots, \quad P\left(\omega_{s}\right)=x_{s}$
- $P\left(\omega_{s+1}\right)=r_{1}, \ldots, P\left(\omega_{s+\ell}\right)=r_{\ell}$
$-\llbracket x \rrbracket_{1}=P\left(e_{1}\right), \ldots, \llbracket x \rrbracket_{N}=P\left(e_{N}\right)$
- $\llbracket x \rrbracket+\llbracket y \rrbracket=$ sharing of $\left(x_{1}, \ldots, x_{s}\right)+\left(y_{1}, \ldots, y_{s}\right)$
- $\llbracket x \rrbracket \cdot \llbracket y \rrbracket=$ sharing of $\left(x_{1}, \ldots, x_{s}\right) \circ\left(y_{1}, \ldots, y_{s}\right)$

Using packed secret sharing

- Shamir's secret sharing can be packed
- $P\left(\omega_{1}\right)=x_{1}, \quad \ldots, \quad P\left(\omega_{s}\right)=x_{s}$
- $P\left(\omega_{s+1}\right)=r_{1}, \ldots, P\left(\omega_{s+\ell}\right)=r_{\ell}$
$-\llbracket x \rrbracket_{1}=P\left(e_{1}\right), \ldots, \llbracket x \rrbracket_{N}=P\left(e_{N}\right)$
- $\llbracket x \rrbracket+\llbracket y \rrbracket=$ sharing of $\left(x_{1}, \ldots, x_{s}\right)+\left(y_{1}, \ldots, y_{s}\right)$
$\bullet \llbracket x \rrbracket \cdot \llbracket y \rrbracket=$ sharing of $\left(x_{1}, \ldots, x_{s}\right) \circ\left(y_{1}, \ldots, y_{s}\right)$

$$
\frac{\binom{d_{\alpha}}{\ell}}{\binom{N}{\ell}}+p
$$

Soundness error

Using packed secret sharing

- Shamir's secret sharing can be packed
- $P\left(\omega_{1}\right)=x_{1}, \quad \ldots, \quad P\left(\omega_{s}\right)=x_{s}$
- $P\left(\omega_{s+1}\right)=r_{1}, \ldots, P\left(\omega_{s+\ell}\right)=r_{\ell}$
$-\llbracket x \rrbracket_{1}=P\left(e_{1}\right), \ldots, \llbracket x \rrbracket_{N}=P\left(e_{N}\right)$
- $\llbracket x \rrbracket+\llbracket y \rrbracket=$ sharing of $\left(x_{1}, \ldots, x_{s}\right)+\left(y_{1}, \ldots, y_{s}\right)$
- $\llbracket x \rrbracket \cdot \llbracket y \rrbracket=$ sharing of $\left(x_{1}, \ldots, x_{s}\right) \circ\left(y_{1}, \ldots, y_{s}\right)$

Here: $(\ell+s-1) \cdot \operatorname{deg} f_{j}$

Soundness error

Using packed secret sharing

- Shamir's secret sharing can be packed
- $P\left(\omega_{1}\right)=x_{1}, \quad \ldots, \quad P\left(\omega_{s}\right)=x_{s}$
- $P\left(\omega_{s+1}\right)=r_{1}, \ldots, P\left(\omega_{s+\ell}\right)=r_{\ell}$
$-\llbracket x \rrbracket_{1}=P\left(e_{1}\right), \ldots, \llbracket x \rrbracket_{N}=P\left(e_{N}\right)$
- $\llbracket x \rrbracket+\llbracket y \rrbracket=$ sharing of $\left(x_{1}, \ldots, x_{s}\right)+\left(y_{1}, \ldots, y_{s}\right)$
- $\llbracket x \rrbracket \cdot \llbracket y \rrbracket=$ sharing of $\left(x_{1}, \ldots, x_{s}\right) \circ\left(y_{1}, \ldots, y_{s}\right)$

Here: $(\ell+s-1) \cdot \operatorname{deg} f_{j}$

Soundness error

- Packed sharing \& Merkle trees $\approx \div$ witness size by s
\Rightarrow interesting for statements with "medium size" witness

Using packed secret sharing

- Shamir's secret sharing can be packed
- $P\left(\omega_{1}\right)=x_{1}, \quad \ldots, \quad P\left(\omega_{s}\right)=x_{s}$
- $P\left(\omega_{s+1}\right)=r_{1}, \ldots, P\left(\omega_{s+\ell}\right)=r_{\ell}$
$-\llbracket x \rrbracket_{1}=P\left(e_{1}\right), \ldots, \llbracket x \rrbracket_{N}=P\left(e_{N}\right)$
- $\llbracket x \rrbracket+\llbracket y \rrbracket=$ sharing of $\left(x_{1}, \ldots, x_{s}\right)+\left(y_{1}, \ldots, y_{s}\right)$
$\bullet \llbracket x \rrbracket \cdot \llbracket y \rrbracket=$ sharing of $\left(x_{1}, \ldots, x_{s}\right) \circ\left(y_{1}, \ldots, y_{s}\right)$

Here: $(\ell+s-1) \cdot \operatorname{deg} f_{j}$

Soundness error

- Packed sharing \& Merkle trees $\approx \div$ witness size by s
\Rightarrow interesting for statements with "medium size" witness
- E.g. an ISIS statement $\vec{t}=A \cdot \vec{e}$ with $\|\vec{e}\|_{\infty} \leq \beta$

TCitH-GGM vs. TCitH-MT

TCitH-GGM	TCitH-MT
Smaller tree	Larger tree ($\sim \times 2$)

TCitH-GGM vs. TCitH-MT

TCitH-GGM	TCitH-MT
Smaller tree	Larger tree $(\sim \times 2)$
Whanes advantage of packed	
sharing	

TCitH-GGM vs. TCitH-MT

TCitH-GGM	TCitH-MT
Smaller tree	Larger tree (\sim x2)

TCitH-GGM vs. TCitH-MT

TCitH-GGM	TCitH-MT
Smaller tree	Larger tree ($\sim \times 2)$
No advantage of packed sharing	Takes advantage of packed sharing
Naturally enforce degree of committed sharings	Need degree enforcing commitment (+1 round)
© Better for "small-size"	
statements	© Better for "medium-size"
statements	

Application: post-quantum ring signatures

Post-quantum ring signatures

- Secret key w
- One-way function f
- Public key $y=f(w)$
- MPC protocol $\Pi: \llbracket w \rrbracket \mapsto 0 / 1$

La signature scheme

Post-quantum ring signatures

- Secret key w
- One-way function f
- Public key $y=f(w)$
- MPC protocol $\Pi: \llbracket w \rrbracket \mapsto 0 / 1$

2 signature scheme

- Secret keys w_{1}, \ldots, w_{r}
- Public keys y_{1}, \ldots, y_{r}
- MPC protocol

$$
\Pi^{\prime}: \llbracket w_{j^{*}} \sharp, \llbracket j^{*} \rrbracket \mapsto 0 / 1
$$

Post-quantum ring signatures

- Secret key w
- One-way function f
- Public key $y=f(w)$
- MPC protocol $\Pi: \llbracket w \rrbracket \mapsto 0 / 1$
- Secret keys w_{1}, \ldots, w_{r}
- Public keys y_{1}, \ldots, y_{r}
- MPC protocol

$$
\Pi^{\prime}: \llbracket w_{j^{*}} \rrbracket, \llbracket j^{*} \rrbracket \mapsto 0 / 1
$$

Post-quantum ring signatures

Idea:

- One-hot encoding of j^{*}

$$
s=\left(0, \ldots, 0, s_{j^{*}}:=1,0, \ldots, 0\right)
$$

Post-quantum ring signatures

∇ Idea:

- One-hot encoding of j^{*}

$$
s=\left(0, \ldots, 0, s_{j^{*}}:=1,0, \ldots, 0\right)
$$

- Π^{\prime} computes $\llbracket y_{j^{*}} \rrbracket=\sum_{j=1}^{r} \llbracket s_{j} \rrbracket \cdot y_{j}$

Post-quantum ring signatures

8 Idea:

- One-hot encoding of j^{*}

$$
s=\left(0, \ldots, 0, s_{j^{*}}:=1,0, \ldots, 0\right)
$$

- Π^{\prime} computes $\llbracket y_{j^{*}} \rrbracket=\sum_{j=1}^{r} \llbracket s_{j} \rrbracket \cdot y_{j}$
(2) Problem: including $\llbracket s \rrbracket$ to the witness $\Rightarrow \mathcal{O}(r)$ signature size

Post-quantum ring signatures

8 Idea:

- One-hot encoding of j^{*}

$$
s=\left(0, \ldots, 0, s_{j^{*}}:=1,0, \ldots, 0\right)
$$

- Π^{\prime} computes $\llbracket y_{j^{*}} \rrbracket=\sum_{j=1}^{r} \llbracket s_{j} \rrbracket \cdot y_{j}$
(2) Problem: including $\llbracket s \rrbracket$ to the witness $\Rightarrow \mathcal{O}(r)$ signature size
* Solution: $\llbracket s^{(1)} \rrbracket, \ldots, \llbracket s^{(d)} \rrbracket$ s.t. $s=s^{(1)} \otimes \cdots \otimes s^{(d)}$

$$
\Rightarrow \mathcal{O}(d \sqrt[d]{r}) \text { signature size } \Rightarrow \mathcal{O}(\log r)
$$

Post-quantum ring signatures

Protocol Π^{\prime}

$$
\text { Input: } \llbracket w \rrbracket, \llbracket s^{(1)} \rrbracket, \ldots, \llbracket s^{(d)} \rrbracket
$$

Post-quantum ring signatures

Protocol Π^{\prime}
Input: $\llbracket w \rrbracket, \llbracket s^{(1)} \rrbracket, \ldots, \llbracket s^{(d)} \rrbracket$

1. Locally compute $\llbracket s \rrbracket=\llbracket s_{1} \rrbracket \otimes \cdots \otimes \llbracket s_{d} \rrbracket$

Post-quantum ring signatures

Protocol Π^{\prime}

Input: $\llbracket w \rrbracket, \llbracket s^{(1)} \rrbracket, \ldots, \llbracket s^{(d)} \rrbracket$

1. Locally compute $\llbracket s \rrbracket=\llbracket s_{1} \rrbracket \otimes \cdots \otimes \llbracket s_{d} \rrbracket$
2. Locally compute $\llbracket y_{j^{*} *} \rrbracket=\sum_{j=1}^{r} \llbracket s_{j} \rrbracket \cdot y_{j}$

Post-quantum ring signatures

Protocol Π^{\prime}

Input: $\llbracket w \rrbracket, \llbracket s^{(1)} \rrbracket, \ldots, \llbracket s^{(d)} \rrbracket$

1. Locally compute $\llbracket s \rrbracket=\llbracket s_{1} \rrbracket \otimes \cdots \otimes \llbracket s_{d} \rrbracket$
2. Locally compute $\llbracket y_{j^{*}} \rrbracket=\sum_{j=1}^{r} \llbracket s_{j} \rrbracket \cdot y_{j}$
3. Check that $\llbracket w \rrbracket, \llbracket y_{j^{*}} \rrbracket$ satisfy $f(w)=y_{j^{*}}$ using Π

Post-quantum ring signatures

Protocol Π^{\prime}

Input: $\llbracket w \rrbracket, \llbracket s^{(1)} \rrbracket, \ldots, \llbracket s^{(d)} \rrbracket$

1. Locally compute $\llbracket s \rrbracket=\llbracket s_{1} \rrbracket \otimes \cdots \otimes \llbracket s_{d} \rrbracket$
2. Locally compute $\llbracket y_{j^{*}} \rrbracket=\sum_{j=1}^{r} \llbracket s_{j} \rrbracket \cdot y_{j}$
3. Check that $\llbracket w \rrbracket, \llbracket y_{j^{*}} \rrbracket$ satisfy $f(w)=y_{j^{*}}$ using Π
4. Check that $\llbracket s \rrbracket$ is the sharing of a one-hot encoding

Post-quantum ring signatures

Protocol Π^{\prime}

Input: $\llbracket w \rrbracket, \llbracket s^{(1)} \rrbracket, \ldots, \llbracket s^{(d)} \rrbracket$

1. Locally compute $\llbracket s \rrbracket=\llbracket s_{1} \rrbracket \otimes \cdots \otimes \llbracket s_{d} \rrbracket$
2. Locally compute $\llbracket y_{j^{*}} \rrbracket=\sum_{j=1}^{r} \llbracket s_{j} \rrbracket \cdot y_{j}$
3. Check that $\llbracket w \rrbracket, \llbracket y_{j^{*}} \rrbracket$ satisfy $f(w)=y_{j^{*}}$ using Π
4. Check that $\llbracket s \rrbracket$ is the sharing of a one-hot encoding

癹 Simple
MPC protocol

Post-quantum ring signatures

Protocol Π^{\prime}

Input: $\llbracket w \rrbracket, \llbracket s^{(1)} \rrbracket, \ldots, \llbracket s^{(d)} \rrbracket$

1. Locally compute $\llbracket s \rrbracket=\llbracket s_{1} \rrbracket \otimes \cdots \otimes \llbracket s_{d} \rrbracket$
2. Locally compute $\llbracket y_{j^{*}} \rrbracket=\sum_{j=1}^{r} \llbracket s_{j} \rrbracket \cdot y_{j}$
3. Check that $\llbracket w \rrbracket, \llbracket y_{j^{*}} \rrbracket$ satisfy $f(w)=y_{j^{*}}$ using Π)
4. Check that $\llbracket s \rrbracket$ is the sharing of a one-hot encoding

我 Simple MPC protocol
! Π must be adapted to use $\llbracket y_{j^{*}} \rrbracket$ instead of $y_{j^{*}}$

Post-quantum ring signatures

Protocol Π^{\prime}

$$
\begin{aligned}
& \text { Input: } \llbracket w \rrbracket, \llbracket s^{(1)} \rrbracket, \ldots, \llbracket s^{(d)} \rrbracket \\
& \text { 1. Locally compute } \llbracket s \rrbracket=\llbracket s_{1} \rrbracket \otimes \cdots \otimes \llbracket s_{d} \rrbracket \\
& \text { 2. Locally compute } \llbracket y_{j^{*}} \rrbracket=\sum_{j=1}^{r} \llbracket s_{j} \rrbracket \cdot y_{j}
\end{aligned}
$$

$$
\text { 3. Check that } \llbracket w \rrbracket, \llbracket y_{j^{*}} \rrbracket \text { satisfy } f(w)=y_{j^{*}} \text { using } \Pi \text {) }
$$

4. Check that $\llbracket s \rrbracket$ is the sharing of a one-hot encoding

我 Simple MPC protocol
! Π must be adapted to use $\llbracket y_{j^{*}} \rrbracket$ instead of $y_{j^{*}}$
! Sharing degrees increase

Post-quantum ring signatures

Protocol Π^{\prime}

Input: $\llbracket w \rrbracket, \llbracket s^{(1)} \rrbracket, \ldots, \llbracket s^{(d)} \rrbracket$

1. Locally compute $\llbracket s \rrbracket=\llbracket s_{1} \rrbracket \otimes \cdots \otimes \llbracket s_{d} \rrbracket$
2. Locally compute $\llbracket y_{j^{*} *} \|=\sum_{j=1}^{r} \llbracket s_{j} \rrbracket \cdot y_{j}$
3. Check that $\llbracket w \rrbracket, \llbracket y_{j^{*}} \rrbracket$ satisfy $f(w)=y_{j^{*}}$ using Π
4. Check that $\llbracket s \rrbracket$ is the sharing of a one-hot encoding

8 14 ring signature scheme

TCitH / FS
焱 Simple MPC protocol
! Π must be adapted to use $\llbracket y_{j^{*}} \rrbracket$ instead of $y_{j^{*}}$
! Sharing degrees increase

Post-quantum ring signatures

\#users		2^{3}	2^{6}	2^{8}	2^{10}	2^{12}	2^{20}	Assumption	Security
Our scheme	2023	4.41	4.60	4.90	5.48	5.82	8.19	MQ over \mathbb{F}_{251}	NIST I
Our scheme	2023	4.30	4.33	4.37	4.45	4.60	5.62	MQ over \mathbb{F}_{256}	NIST I
Our scheme	2023	7.51	8.40	8.72	9.36	10.30	12.81	SD over \mathbb{F}_{251}	NIST I
Our scheme	2023	7.37	7.51	7.96	8.24	8.40	10.09	SD over \mathbb{F}_{256}	NIST I
Our scheme	2023	7.87	7.90	7.94	8.02	8.18	9.39	AES128	NIST I
Our scheme	2023	6.81	6.84	6.88	6.96	7.12	8.27	AES128-EM	NIST I
KKW [KKW18]	2018	-	250	-	-	456	-	LowMC	NIST V
GGHK [GGHAK22]	2021	-	-	-	56	-	-	LowMC	NIST V
Raptor [LAZ19]	2019	10	81	333	1290	5161	-	MSIS / MLWE	100 bit
EZSLL [EZS + 19]	2019	19	31	-	-	148	-	MSIS / MLWE	NIST II
Falaf [BKP20]	2020	30	32	-	-	35	-	MSIS / MLWE	NIST I
Calamari [BKP20]	2020	5	8	-	-	14	-	CSIDH	128 bit
LESS [BBN ${ }^{+}$22]	2022	11	14	-	-	20	-	Code Equiv.	128 bit
MRr-DSS [BESV22]	2022	27	36	64	145	422	-	MinRank	NIST I

Post-quantum ring signatures

Application to MO, SD, AES

| | | | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | |
| \#users | | 2^{3} | 2^{6} | 2^{8} | 2^{10} | 2^{12} | 2^{20} | Assumption | Security |
| Our scheme | 2023 | 4.41 | 4.60 | 4.90 | 5.48 | 5.82 | 8.19 | MQ over \mathbb{F}_{251} | NIST I |
| Our scheme | 2023 | 4.30 | 4.33 | 4.37 | 4.45 | 4.60 | 5.62 | MQ over \mathbb{F}_{256} | NIST I |
| Our scheme | 2023 | 7.51 | 8.40 | 8.72 | 9.36 | 10.30 | 12.81 | SD over \mathbb{F}_{251} | NIST I |
| Our scheme | 2023 | 7.37 | 7.51 | 7.96 | 8.24 | 8.40 | 10.09 | SD over \mathbb{F}_{256} | NIST I |
| Our scheme | 2023 | 7.87 | 7.90 | 7.94 | 8.02 | 8.18 | 9.39 | AES128 | NIST I |
| Our scheme | 2023 | 6.81 | 6.84 | 6.88 | 6.96 | 7.12 | 8.27 | AES128-EM | NIST I |
| KKW [KKW18] | 2018 | - | 250 | - | - | 456 | - | LowMC | NIST V |
| GGHK [GGHAK22] | 2021 | - | - | - | 56 | - | - | LowMC | NIST V |
| Raptor [LAZ19] | 2019 | 10 | 81 | 333 | 1290 | 5161 | - | MSIS / MLWE | 100 bit |
| EZSLL [EZS ${ }^{+}$19] | 2019 | 19 | 31 | - | - | 148 | - | MSIS / MLWE | NIST II |
| Falafl [BKP20] | 2020 | 30 | 32 | - | - | 35 | - | MSIS / MLWE | NIST I |
| Calamari [BKP20] | 2020 | 5 | 8 | - | - | 14 | - | CSIDH | 128 bit |
| LESS [BBN ${ }^{+}$22] | 2022 | 11 | 14 | - | - | 20 | - | Code Equiv. | 128 bit |
| MRr-DSS [BESV22] | 2022 | 27 | 36 | 64 | 145 | 422 | - | MinRank | NIST I |

Post-quantum ring signatures

Application to MO, SD, AES

Size range: 5-13 kB
for |ring|=2 2^{20}

Post-quantum ring signatures

Application to MO, SD, AES

\#users		2^{3}	2^{6}	2^{8}	2^{10}	2^{12}	2^{20}			
		Assumption						Security		
Our scheme	2023		4.41	4.60	4.90	5.48	5.82	8.19	MQ over \mathbb{F}_{251}	NIST I
Our scheme	2023	4.30	4.33	4.37	4.45	4.60	5.62	MQ over \mathbb{F}_{256}	NIST I	
Our scheme	2023	7.51	8.40	8.72	9.36	10.30	12.81	SD over \mathbb{F}_{251}	NIST I	
Our scheme	2023	7.37	7.51	7.96	8.24	3.40	10.09	SD over \mathbb{F}_{256}	NIST I	
Our scheme	2023	7.87	7.90	7.94	8.02	8.18	9.39	AES128	NIST I	
Our scheme	2023	6.81	6.84	6.88	0.96	7.12	8.27	AES128-EM	NIST I	
KKW [KKW18]	2018	-	250		-	456	-	LowMC	NIST V	
GGHK [GGHAK22]	2021	-	81		56	-	-	LowMC	NIST V	
Raptor [LAZ19]	2019	10	81	333	1290	5161	-	MSIS / MLWE	100 bit	
EZSLL [EZS $\left.{ }^{+} 19\right]$	2019	19	32	-	-	148	-	MSIS / MLWE	NIST II	
Falafl [BKP20]	2020	30	32	-	-	35	-	MSIS / MLWE	NIST I	
Calamari [BKP20]	2020	5	8	-	-	14	-	CSIDH	128 bit	
LESS [$\mathrm{BBN}^{+} 22$]	2022		14	-	-	20	-	Code Equiv.	128 bit	
MRr-DSS [BESV22]	2022	27	36	64	145	422	-	MinRank	NIST I	

Size range: 5-13 kB
for |ring|=2 ${ }^{20}$

Previous works:

$\geq 14 \mathrm{kB}$ for \mid ring $\mid=2^{10}$
no / slow implementations

Post-quantum ring signatures

Relation to other

 proof systems
Connections to other proof systems

Connections to other proof systems

Connections to other proof systems

Connections to other proof systems

Connections to other proof systems

Thank you!

References

[AGHJY23] Aguilar Melchor, Gama, Howe, Hülsing, Joseph, Yue: "The Return of the SDitH" (EUROCRYPT 2023)
[BBMORRRS24] Baum, Beullens, Mukherjee, Orsini, Ramacher, Rechberger, Roy, Scholl: "One Tree to Rule Them All: Optimizing GGM Trees and OWFs for Post-Quantum Signatures" https://ia.cr/2024/490
[BFGNR24] Bidoux, Feneuil, Gaborit, Neveu, Rivain. "Dual Support Decomposition in the Head: Shorter Signatures from Rank SD and MinRank" https://ia.cr/2024/541
[CDIO5] Cramer, Damgard, Ishai: "Share conversion, pseudorandom secret-sharing and applications to secure computation" (TCC 2005)
[FR22] Thibauld Feneuil, Matthieu Rivain: "Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head" https://ia.cr/2022/1407 (ASIACRYPT 2023)
[FR23] Thibauld Feneuil, Matthieu Rivain: "Threshold Computation in the Head: Improved Framework for Post-Quantum Signatures and Zero-Knowledge Arguments" https://ia.cr/ 2023/1573
[ISN89] Ito, Saito, Nishizeki: "Secret sharing scheme realizing general access structure" (Electronics and Communications in Japan 1989)
[KKW18] Katz, Kolesnikov, Wang: "Improved Non-Interactive Zero Knowledge with Applications to Post-Quantum Signatures" (CCS 2018)

