
Threshold Computation in the Head

Matthieu Rivain

New Trends in PQC Workshop

Oxford, 11 June, 2024

https://ia.cr/2022/1407

Original TCitH
framework

(Asiacrypt’23)

https://ia.cr/2023/1573

Improved TCitH
framework
(preprint)

Threshold Computation in the Head

Joint work with Thibauld Feneuil

https://ia.cr/2022/1407
https://ia.cr/2023/1573

Roadmap

• MPC-in-the-Head paradigm

• TC-in-the-Head framework (and application to PQ signatures)

🌲 TCitH with Merkle trees

🌲 TCitH with GGM trees

✖ TCitH using multiplication homomorphism

📦 TCitH using packed secret sharing

• Application: post-quantum ring signatures

• Relation to other proof systems

MPC-in-the-Head
paradigm

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

MPC-in-the-Head paradigm

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

MPC-in-the-Head paradigm

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y

MPC-in-the-Head paradigm

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y

MPC-in-the-Head paradigm

Signature scheme

x
Hash

function

msg

signature

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y
Signature scheme

x
Hash

function

msg

signature

MPC-in-the-Head transform

MPC-in-the-Head paradigm

MPC model

[[x]]1 [[x]]2

[[x]]5

[[x]]4

[[x]]3

 is a linear secret sharing of [[x]] x

• Jointly compute

• -private

• Semi-honest model

• Broadcast model

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

ℓ

[[x]]1

• Jointly compute

• -private

• Semi-honest model

• Broadcast model

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

ℓ

[[x]]2

[[x]]5

[[x]]4

[[x]]3

Public
domain

[[α]]1
[[α]]2

[[α]]3

[[α]]4

[[α]]5

 is a linear secret sharing of [[x]] x

MPC model

MPCitH transform

Prover Verifier

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

MPCitH transform

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

MPCitH transform

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

② Run MPC in their head

③ Choose a random set of parties
, s.t. .I ⊆ {1,…, N} | I | = ℓI

send broadcast
 [[α]]1, …, [[α]]N

MPCitH transform

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

③ Choose a random set of parties
, s.t. .I ⊆ {1,…, N} | I | = ℓI

④ Open parties in I
([[x]]i, ρi)i∈I

MPCitH transform

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

④ Open parties in I
([[x]]i, ρi)i∈I

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ∈ I
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

I

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

③ Choose a random set of parties
, s.t. .I ⊆ {1,…, N} | I | = ℓ

MPCitH transform

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

④ Open parties in I
([[x]]i, ρi)i∈I

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ∈ I
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

I

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

③ Choose a random set of parties
, s.t. .I ⊆ {1,…, N} | I | = ℓ

MPCitH transform: with additive sharing

Additive sharing:
x = [[x]]1 + ⋯ + [[x]]N

🔎

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

④ Open parties in I
([[x]]i, ρi)i∈I

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ∈ I
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

I

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

③ Choose a random set of parties
, s.t. .I ⊆ {1,…, N} | I | = ℓ

MPCitH transform: with additive sharing

Generated using a GGM seed tree [KKW18]:

🔎

root seed

leaf seeds

[[x]]1 [[x]]2 [[x]]N⋯ +Δx

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

④ Open parties in I
([[x]]i, ρi)i∈I

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ∈ I
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

I

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

③ Choose a random set of parties
, s.t. .I ⊆ {1,…, N} | I | = ℓ

MPCitH transform: with additive sharing

Sharing / MPC protocol
-private

 soundness error

(N − 1)

⇒ ≈
1
N

🔎

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

④ Open parties in I
([[x]]i, ρi)i∈I

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ∈ I
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

I

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

③ Choose a random set of parties
, s.t. .I ⊆ {1,…, N} | I | = ℓ

MPCitH transform: with additive sharing

Sharing / MPC protocol
-private

 soundness error

(N − 1)

⇒ ≈
1
N

🔎

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

④ Open parties in I
([[x]]i, ρi)i∈I

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ∈ I
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

I

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

③ Choose a random set of parties
, s.t. .I ⊆ {1,…, N} | I | = ℓ

MPCitH transform: with additive sharing

Sharing / MPC protocol
-private

 soundness error =

(N − 1)

⇒
1
N

🔎

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

④ Open parties in I
([[x]]i, ρi)i∈I

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ∈ I
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

I

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

③ Choose a random set of parties
, s.t. .I ⊆ {1,…, N} | I | = ℓ

MPCitH transform: with additive sharing

Prover Verifier

send broadcast
 [[α]]1, …, [[α]]N

④ Open parties in I
([[x]]i, ρi)i∈I

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ∈ I
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

I

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

③ Choose a random set of parties
, s.t. .I ⊆ {1,…, N} | I | = ℓ

Only seeds to be revealed:

log2 N

root seed

leaf seeds

[[x]]1 [[x]]2 [[x]]N⋯ +Δx

TC-in-the-Head framework
(with Merkle trees)

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

④ Open parties in I
([[x]]i, ρi)i∈I

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ∈ I
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

I

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

③ Choose a random set of parties
, s.t. .I ⊆ {1,…, N} | I | = ℓ

Threshold Computation in the Head

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

④ Open parties in I
([[x]]i, ρi)i∈I

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ∈ I
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

I

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

③ Choose a random set of parties
, s.t. .I ⊆ {1,…, N} | I | = ℓ

Shamir secret sharing:

for

 -privacy

We use

[[x]]i := P(ei) ∀i

P(X) := x + r1 ⋅ X + ⋯ + rℓ ⋅ Xℓ

⇒ ℓ

ℓ ≪ N

🔎

Threshold Computation in the Head

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

④ Open parties in I
([[x]]i, ρi)i∈I

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ∈ I
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

I

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

③ Choose a random set of parties
, s.t. .I ⊆ {1,…, N} | I | = ℓ

Shamir secret sharing:

for

 -privacy

We use

[[x]]i := P(ei) ∀i

P(X) := x + r1 ⋅ X + ⋯ + rℓ ⋅ Xℓ

⇒ ℓ

ℓ ≪ N

🔎

Threshold Computation in the Head

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

④ Open parties in I
([[x]]i, ρi)i∈I

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ∈ I
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

I

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

③ Choose a random set of parties
, s.t. .I ⊆ {1,…, N} | I | = ℓ

Shamir secret sharing:

for

 -privacy

We use (e.g.)

[[x]]i := P(ei) ∀i

P(X) := x + r1 ⋅ X + ⋯ + rℓ ⋅ Xℓ

⇒ ℓ

ℓ ≪ N ℓ = 1

🔎

Threshold Computation in the Head

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

④ Open parties in I
([[x]]i, ρi)i∈I

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ∈ I
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

I

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

③ Choose a random set of parties
, s.t. .I ⊆ {1,…, N} | I | = ℓ

Committed using a Merkle tree:

🔎

[[x]]1 [[x]]2 [[x]]N⋯

root = commitment

Threshold Computation in the Head

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

④ Open parties in I
([[x]]i, ρi)i∈I

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ∈ I
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

I

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

③ Choose a random set of parties
, s.t. .I ⊆ {1,…, N} | I | = ℓ

Sharing / MPC protocol -private

 soundness error =

 broadcast messages must be
valid Shamir’s sharings

 soundness error =

ℓ

⇒ (N − ℓ)/N

⇒
1

(N
ℓ)

🔎

Threshold Computation in the Head

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

④ Open parties in I
([[x]]i, ρi)i∈I

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ∈ I
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

I

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

③ Choose a random set of parties
, s.t. .I ⊆ {1,…, N} | I | = ℓ

Sharing / MPC protocol -private

 soundness error = 🤔

 broadcast messages must be
valid Shamir’s sharings

 soundness error =

ℓ

⇒ (N − ℓ)/N

⇒
1

(N
ℓ)

🔎

Threshold Computation in the Head

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

④ Open parties in I
([[x]]i, ρi)i∈I

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ∈ I
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

I

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

③ Choose a random set of parties
, s.t. .I ⊆ {1,…, N} | I | = ℓ

Sharing / MPC protocol -private

 soundness error = 🤔

💡 broadcast messages must be
valid Shamir’s sharings

 soundness error =

ℓ

⇒ (N − ℓ)/N

⇒
1

(N
ℓ)

🔎

Threshold Computation in the Head

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

④ Open parties in I
([[x]]i, ρi)i∈I

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ∈ I
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

I

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

③ Choose a random set of parties
, s.t. .I ⊆ {1,…, N} | I | = ℓ

Sharing / MPC protocol -private

 soundness error = 🤔

💡 broadcast messages must be
valid Shamir’s sharings

 soundness error = 🤩

ℓ

⇒ (N − ℓ)/N

⇒
1

(N
ℓ)

🔎

Threshold Computation in the Head

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

④ Open parties in I
([[x]]i, ρi)i∈I

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ∈ I
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

I

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

③ Choose a random set of parties
, s.t. .I ⊆ {1,…, N} | I | = ℓ

🔎

Prover Verifier

send broadcast
 [[α]]1, …, [[α]]N

④ Open parties in I
([[x]]i, ρi)i∈I

I

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

Only labels to be revealed: log2 N

[[x]]1 [[x]]2 [[x]]N⋯

root = commitment

Threshold Computation in the Head

Soundness

 = “false positive probability”

 = MPC protocol accepts while

p
P[[[x]] f(x) ≠ y]

Soundness

 = “false positive probability”

 = MPC protocol accepts while

p
P[[[x]] f(x) ≠ y]

1
N

+ p

Soundness error of
standard MPCitH

Soundness

 = “false positive probability”

 = MPC protocol accepts while

p
P[[[x]] f(x) ≠ y]

1
N

+ p

1

(N
ℓ)

+ p

Soundness error
of TCitH

hope 🙏

Soundness error of
standard MPCitH

Soundness

 = “false positive probability”

 = MPC protocol accepts while

p
P[[[x]] f(x) ≠ y]

1
N

+ p

1

(N
ℓ)

+ p ⋅
ℓ(N − ℓ)

ℓ + 1

1

(N
ℓ)

+ p

Soundness error
of TCitH

hope 🙏

reality 😬

Soundness error of
standard MPCitH

Soundness

1

(N
ℓ)

+ p ⋅
ℓ(N − ℓ)

ℓ + 1

Why?

🤔

Soundness

1

(N
ℓ)

+ p ⋅
ℓ(N − ℓ)

ℓ + 1

💡

Why?

• Prover can commit invalid sharings

• Let = sharing interpolating

• Many different many possible false positives

[[x]](J) ([[x]]i)i∈J

[[x]](J) ⇒

🤔

Soundness

1

(N
ℓ)

+ p ⋅
ℓ(N − ℓ)

ℓ + 1

💡

Why?

• Prover can commit invalid sharings

• Let = sharing interpolating

• Many different many possible false positives

[[x]](J) ([[x]]i)i∈J

[[x]](J) ⇒

🛠

• “Degree-enforcing commitment scheme”

• Verifier Prover : random

• Prover Verifier :

• Before MPC computation

→ {γj}

→ [[ξ]] = Σj γi ⋅ [[xj]]

🤔

Soundness

1

(N
ℓ)

+ p ⋅
ℓ(N − ℓ)

ℓ + 1

💡

Why?

• Prover can commit invalid sharings

• Let = sharing interpolating

• Many different many possible false positives

[[x]](J) ([[x]]i)i∈J

[[x]](J) ⇒

🛠

• “Degree-enforcing commitment scheme”

• Verifier Prover : random

• Prover Verifier :

• Before MPC computation

→ {γj}

→ [[ξ]] = Σj γi ⋅ [[xj]]
⟹

1

(N
ℓ)

+ p

🤔

🤩

TCitH vs. standard MPCitH

 Similar soundness: ℓ = 1 ⇒
1
N

+ p 🤝

MPCitH
+ seed trees

+ hypercube [AGHHJY23]

TCitH

Prover runtime Party emulations: log N +1
Symmetric crypto: O(N)

Party emulations: 2
Symmetric crypto: O(N)

Verifier runtime Party emulations: log N
Symmetric crypto: O(N)

Party emulations: 1
Symmetric crypto: O(log N)

Size of tree 128-bit security: ~2KB
256-bit security: ~8KB

128-bit security: ~4KB
256-bit security: ~16KB

Number of
parties

ℓ = 1

TCitH vs. standard MPCitH

N ≤ |𝔽 |

🤝

😀

😀

🙁

🙁

 Similar soundness: ℓ = 1 ⇒
1
N

+ p

MPCitH
+ seed trees

+ hypercube [AGHHJY23]

TCitH

Prover runtime Party emulations: log N +1
Symmetric crypto: O(N)

Party emulations: 2
Symmetric crypto: O(N)

Verifier runtime Party emulations: log N
Symmetric crypto: O(N)

Party emulations: 1
Symmetric crypto: O(log N)

Size of tree 128-bit security: ~2KB
256-bit security: ~8KB

128-bit security: ~4KB
256-bit security: ~16KB

Number of
parties

ℓ = 1

TCitH vs. standard MPCitH

N ≤ |𝔽 |

🤝

😀

😀

🙁

🙁

fewer party
emulations

 Similar soundness: ℓ = 1 ⇒
1
N

+ p

MPCitH
+ seed trees

+ hypercube [AGHHJY23]

TCitH

Prover runtime Party emulations: log N +1
Symmetric crypto: O(N)

Party emulations: 2
Symmetric crypto: O(N)

Verifier runtime Party emulations: log N
Symmetric crypto: O(N)

Party emulations: 1
Symmetric crypto: O(log N)

Size of tree 128-bit security: ~2KB
256-bit security: ~8KB

128-bit security: ~4KB
256-bit security: ~16KB

Number of
parties

ℓ = 1

TCitH vs. standard MPCitH

N ≤ |𝔽 |

🤝

😀

😀

🙁

🙁

fewer party
emulations

 Similar soundness: ℓ = 1 ⇒
1
N

+ p

MPCitH
+ seed trees

+ hypercube [AGHHJY23]

TCitH

Prover runtime Party emulations: log N +1
Symmetric crypto: O(N)

Party emulations: 2
Symmetric crypto: O(N)

Verifier runtime Party emulations: log N
Symmetric crypto: O(N)

Party emulations: 1
Symmetric crypto: O(log N)

Size of tree 128-bit security: ~2KB
256-bit security: ~8KB

128-bit security: ~4KB
256-bit security: ~16KB

Number of
parties

ℓ = 1

TCitH vs. standard MPCitH

N ≤ |𝔽 |

🤝

😀

😀

🙁

🙁

🚀 much less
symmetric crypto

 Similar soundness: ℓ = 1 ⇒
1
N

+ p

MPCitH
+ seed trees

+ hypercube [AGHHJY23]

TCitH

Prover runtime Party emulations: log N +1
Symmetric crypto: O(N)

Party emulations: 2
Symmetric crypto: O(N)

Verifier runtime Party emulations: log N
Symmetric crypto: O(N)

Party emulations: 1
Symmetric crypto: O(log N)

Size of tree 128-bit security: ~2KB
256-bit security: ~8KB

128-bit security: ~4KB
256-bit security: ~16KB

Number of
parties

ℓ = 1

TCitH vs. standard MPCitH

N ≤ |𝔽 |

🤝

😀

😀

🙁

🙁2×

 Similar soundness: ℓ = 1 ⇒
1
N

+ p

MPCitH
+ seed trees

+ hypercube [AGHHJY23]

TCitH

Prover runtime Party emulations: log N +1
Symmetric crypto: O(N)

Party emulations: 2
Symmetric crypto: O(N)

Verifier runtime Party emulations: log N
Symmetric crypto: O(N)

Party emulations: 1
Symmetric crypto: O(log N)

Size of tree 128-bit security: ~2KB
256-bit security: ~8KB

128-bit security: ~4KB
256-bit security: ~16KB

Number of
parties

ℓ = 1

TCitH vs. standard MPCitH

N ≤ |𝔽 |

🤝

😀

😀

🙁

🙁

 Similar soundness: ℓ = 1 ⇒
1
N

+ p

MPCitH
+ seed trees

+ hypercube [AGHHJY23]

TCitH

Prover runtime Party emulations: log N +1
Symmetric crypto: O(N)

Party emulations: 2
Symmetric crypto: O(N)

Verifier runtime Party emulations: log N
Symmetric crypto: O(N)

Party emulations: 1
Symmetric crypto: O(log N)

Size of tree 128-bit security: ~2KB
256-bit security: ~8KB

128-bit security: ~4KB
256-bit security: ~16KB

Number of
parties

ℓ = 1

TCitH vs. standard MPCitH

N ≤ |𝔽 |

🤝

😀

😀

🙁

🙁

Getting rid of these limitations

 TCitH with GGM tree→

😀

😀

 Similar soundness: ℓ = 1 ⇒
1
N

+ p

TC-in-the-Head framework
with GGM trees

TCitH with GGM trees

r1 + r2 + ⋯ ⋯ + rN = x

Step 1: Generate a
replicated secret sharing

x = r1 + r2 + ⋯ + rN

[ISN89]

+Δx

TCitH with GGM trees

r1 + r2 + ⋯ ⋯ + rN = x
→ Party 1

→ Party 2

⋮
→ Party N

Step 1: Generate a
replicated secret sharing

x = r1 + r2 + ⋯ + rN

[ISN89]

+Δx

TCitH with GGM trees

r1 + r2 + ⋯ ⋯ + rN = x
→ Party 1

→ Party 2

⋮
→ Party N

Step 1: Generate a
replicated secret sharing

x = r1 + r2 + ⋯ + rN
Let

 with

P(X) = Δx + ∑j
rjPj(X)

Pj(X) = 1 − (1/ej) ⋅ X

Step 2: Convert it into a
Shamir’s secret sharing[ISN89] [CDI05]

+Δx

TCitH with GGM trees

r1 + r2 + ⋯ ⋯ + rN = x
→ Party 1

→ Party 2

⋮
→ Party N

Step 1: Generate a
replicated secret sharing

x = r1 + r2 + ⋯ + rN

Step 2: Convert it into a
Shamir’s secret sharing

💡 is a
valid Shamir’s secret sharing of

[[x]] = (P(e1), …, P(eN))
x

[ISN89] [CDI05]

+Δx

Let

 with

P(X) = Δx + ∑j
rjPj(X)

Pj(X) = 1 − (1/ej) ⋅ X

TCitH with GGM trees

r1 + r2 + ⋯ ⋯ + rN = x
→ Party 1

→ Party 2

⋮
→ Party N

Step 1: Generate a
replicated secret sharing

x = r1 + r2 + ⋯ + rN

Party can compute

(since)

i

[[x]]i = ∑
j≠i

rjPj(ei)

Pi(ei) = 0

Step 2: Convert it into a
Shamir’s secret sharing

💡 is a
valid Shamir’s secret sharing of

[[x]] = (P(e1), …, P(eN))
x

[ISN89] [CDI05]

+Δx

Let

 with

P(X) = Δx + ∑j
rjPj(X)

Pj(X) = 1 − (1/ej) ⋅ X

TCitH with GGM trees

r1 + r2 + ⋯ ⋯ + rN = x
→ Party 1

→ Party 2

⋮
→ Party N

Party can compute

(since)

i

[[x]]i = ∑
j≠i

rjPj(ei)

Pi(ei) = 0

Step 1: Generate a
replicated secret sharing

x = r1 + r2 + ⋯ + rN

Step 2: Convert it into a
Shamir’s secret sharing

💡 is a
valid Shamir’s secret sharing of

[[x]] = (P(e1), …, P(eN))
x

[ISN89] [CDI05]

+Δx

Let

 with

P(X) = Δx + ∑j
rjPj(X)

Pj(X) = 1 − (1/ej) ⋅ X

TCitH with GGM trees

Party can compute

(since)

i

[[x]]i = ∑
j≠i

rjPj(ei)

Pi(ei) = 0

Step 1: Generate a
replicated secret sharing

x = r1 + r2 + ⋯ + rN

Step 2: Convert it into a
Shamir’s secret sharing

💡 is a
valid Shamir’s secret sharing of

[[x]] = (P(e1), …, P(eN))
x

🛠 Can be
adapted to ℓ > 1

r1 + r2 + ⋯ ⋯ + rN = x
→ Party 1

→ Party 2

⋮
→ Party N

[ISN89] [CDI05]

+Δx

Let

 with

P(X) = Δx + ∑j
rjPj(X)

Pj(X) = 1 − (1/ej) ⋅ X

TCitH with GGM trees

Party can compute

(since)

i

[[x]]i = ∑
j≠i

rjPj(ei)

Pi(ei) = 0

Step 1: Generate a
replicated secret sharing

x = r1 + r2 + ⋯ + rN

Step 2: Convert it into a
Shamir’s secret sharing

💡 is a
valid Shamir’s secret sharing of

[[x]] = (P(e1), …, P(eN))
x

🛠 Can be
adapted to ℓ > 1

🌲 Size of
GGM tree

r1 + r2 + ⋯ ⋯ + rN = x
→ Party 1

→ Party 2

⋮
→ Party N

[ISN89] [CDI05]

+Δx

Let

 with

P(X) = Δx + ∑j
rjPj(X)

Pj(X) = 1 − (1/ej) ⋅ X

TCitH with GGM trees

Party can compute

(since)

i

[[x]]i = ∑
j≠i

rjPj(ei)

Pi(ei) = 0

Step 1: Generate a
replicated secret sharing

x = r1 + r2 + ⋯ + rN

Step 2: Convert it into a
Shamir’s secret sharing

💡 is a
valid Shamir’s secret sharing of

[[x]] = (P(e1), …, P(eN))
x

🛠 Can be
adapted to ℓ > 1

🌲 Size of
GGM tree

😇 Good soundness
(only valid sharings)

r1 + r2 + ⋯ ⋯ + rN = x
→ Party 1

→ Party 2

⋮
→ Party N

[ISN89] [CDI05]

+Δx

Let

 with

P(X) = Δx + ∑j
rjPj(X)

Pj(X) = 1 − (1/ej) ⋅ X

TCitH with GGM trees

Party can compute

(since)

i

[[x]]i = ∑
j≠i

rjPj(ei)

Pi(ei) = 0

Step 1: Generate a
replicated secret sharing

x = r1 + r2 + ⋯ + rN

Step 2: Convert it into a
Shamir’s secret sharing

💡 is a
valid Shamir’s secret sharing of

[[x]] = (P(e1), …, P(eN))
x

🛠 Can be
adapted to ℓ > 1

🌲 Size of
GGM tree

😇 Good soundness
(only valid sharings)

r1 + r2 + ⋯ ⋯ + rN = x
→ Party 1

→ Party 2

⋮
→ Party N

🐌 Loose fast
verification

[ISN89] [CDI05]

+Δx

Let

 with

P(X) = Δx + ∑j
rjPj(X)

Pj(X) = 1 − (1/ej) ⋅ X

Speedups for MPCitH candidates

Additive MPCitH TCitH (GGM tree)

Traditional (ms) Hypercube (ms) TCitH (ms) Saving

Party emulations
/ repetition

AIMer 4.53 3.22 3.22 -0 %

Biscuit 17.71 4.65 4.24 -16 %

MIRA 384.26 20.11 9.89 -51 %

MiRitH-Ia 54.15 6.60 5.42 -18 %

MiRitH-Ib 89.50 8.66 6.66 -23 %

MQOM-31 96.41 11.27 8.74 -21 %

MQOM-251 44.11 7.56 5.97 -21 %

RYDE 12.41 4.65 4.65 -0 %

SDitH-256 78.37 7.23 5.31 -27 %

SDitH-251 19.15 7.53 6.44 -14 %

21 + log2 NN

• Comparison based on a generic MPCitH library (libmpcith)

• Code for MPC protocols fetched from the submission packages

Speedups for MPCitH candidates

Additive MPCitH TCitH (GGM tree)

Traditional (ms) Hypercube (ms) TCitH (ms) Saving

Party emulations
/ repetition

AIMer 4.53 3.22 3.22 -0 %

Biscuit 17.71 4.65 4.24 -16 %

MIRA 384.26 20.11 9.89 -51 %

MiRitH-Ia 54.15 6.60 5.42 -18 %

MiRitH-Ib 89.50 8.66 6.66 -23 %

MQOM-31 96.41 11.27 8.74 -21 %

MQOM-251 44.11 7.56 5.97 -21 %

RYDE 12.41 4.65 4.65 -0 %

SDitH-256 78.37 7.23 5.31 -27 %

SDitH-251 19.15 7.53 6.44 -14 %

21 + log2 NN

• Comparison based on a generic MPCitH library (libmpcith)

• Code for MPC protocols fetched from the submission packages

⚠ But only if |𝔽 | ≥ N

Speedups for MPCitH candidates

Additive MPCitH TCitH (GGM tree)

Traditional (ms) Hypercube (ms) TCitH (ms) Saving

Party emulations
/ repetition

AIMer 4.53 3.22 3.22 -0 %

Biscuit 17.71 4.65 4.24 -16 %

MIRA 384.26 20.11 9.89 -51 %

MiRitH-Ia 54.15 6.60 5.42 -18 %

MiRitH-Ib 89.50 8.66 6.66 -23 %

MQOM-31 96.41 11.27 8.74 -21 %

MQOM-251 44.11 7.56 5.97 -21 %

RYDE 12.41 4.65 4.65 -0 %

SDitH-256 78.37 7.23 5.31 -27 %

SDitH-251 19.15 7.53 6.44 -14 %

21 + log2 NN

• Comparison based on a generic MPCitH library (libmpcith)

• Code for MPC protocols fetched from the submission packages

⚠ But only if |𝔽 | ≥ N

🛠 Party emulations = 1 + ⌈ log2 N
log2 |𝔽 | ⌉ =

2 if |𝔽 | ≥ N
⋮

1 + log2 N if |𝔽 | = 2

Speedups for MPCitH candidates

Additive MPCitH TCitH (GGM tree)

Traditional (ms) Hypercube (ms) TCitH (ms) Saving

Party emulations
/ repetition

AIMer 4.53 3.22 3.22 -0 %

Biscuit 17.71 4.65 4.24 -16 %

MIRA 384.26 20.11 9.89 -51 %

MiRitH-Ia 54.15 6.60 5.42 -18 %

MiRitH-Ib 89.50 8.66 6.66 -23 %

MQOM-31 96.41 11.27 8.74 -21 %

MQOM-251 44.11 7.56 5.97 -21 %

RYDE 12.41 4.65 4.65 -0 %

SDitH-256 78.37 7.23 5.31 -27 %

SDitH-251 19.15 7.53 6.44 -14 %

21 + log2 NN

• Comparison based on a generic MPCitH library (libmpcith)

• Code for MPC protocols fetched from the submission packages

⚠ But only if |𝔽 | ≥ N

🛠 Party emulations = 1 + ⌈ log2 N
log2 |𝔽 | ⌉ =

2 if |𝔽 | ≥ N
⋮

1 + log2 N if |𝔽 | = 2

Speedups for MPCitH candidates

Additive MPCitH TCitH (GGM tree)

Traditional (ms) Hypercube (ms) TCitH (ms) Saving

Party emulations
/ repetition

AIMer 4.53 3.22 3.22 -0 %

Biscuit 17.71 4.65 4.24 -16 %

MIRA 384.26 20.11 9.89 -51 %

MiRitH-Ia 54.15 6.60 5.42 -18 %

MiRitH-Ib 89.50 8.66 6.66 -23 %

MQOM-31 96.41 11.27 8.74 -21 %

MQOM-251 44.11 7.56 5.97 -21 %

RYDE 12.41 4.65 4.65 -0 %

SDitH-256 78.37 7.23 5.31 -27 %

SDitH-251 19.15 7.53 6.44 -14 %

1 + ⌈ log2 N
log2 |𝔽 | ⌉1 + log2 NN

• Comparison based on a generic MPCitH library (libmpcith)

• Code for MPC protocols fetched from the submission packages

Using multiplication
homomorphism

& packed secret sharing

Using multiplication homomorphism

• Shamir’s secret sharing satisfies:

• Simple protocol to verify polynomial constraints

‣ valid

‣ parties locally compute

[[x]](d) ⋅ [[y]](d) = [[x ⋅ y]](2d)

w ⇔ f1(w) = 0, …, fm(w) = 0

[[α]] = [[v]] +
m

∑
j=1

γj ⋅ fj([[w]])

Using multiplication homomorphism

• Shamir’s secret sharing satisfies:

• Simple protocol to verify polynomial constraints

‣ valid

‣ parties locally compute

[[x]](d) ⋅ [[y]](d) = [[x ⋅ y]](2d)

w ⇔ f1(w) = 0, …, fm(w) = 0

[[α]] = [[v]] +
m

∑
j=1

γj ⋅ fj([[w]])

Using multiplication homomorphism

• Shamir’s secret sharing satisfies:

• Simple protocol to verify polynomial constraints

‣ valid

‣ parties locally compute

[[x]](d) ⋅ [[y]](d) = [[x ⋅ y]](2d)

w ⇔ f1(w) = 0, …, fm(w) = 0

[[α]] = [[v]] +
m

∑
j=1

γj ⋅ fj([[w]])

Using multiplication homomorphism

• Shamir’s secret sharing satisfies:

• Simple protocol to verify polynomial constraints

‣ valid

‣ parties locally compute

[[x]](d) ⋅ [[y]](d) = [[x ⋅ y]](2d)

w ⇔ f1(w) = 0, …, fm(w) = 0

[[α]] = [[v]] +
m

∑
j=1

γj ⋅ fj([[w]])

randomness
from the verifier

Using multiplication homomorphism

• Shamir’s secret sharing satisfies:

• Simple protocol to verify polynomial constraints

‣ valid

‣ parties locally compute

[[x]](d) ⋅ [[y]](d) = [[x ⋅ y]](2d)

w ⇔ f1(w) = 0, …, fm(w) = 0

[[α]] = [[v]] +
m

∑
j=1

γj ⋅ fj([[w]])

pre-committed
sharing of 0

randomness
from the verifier

Using multiplication homomorphism

• Shamir’s secret sharing satisfies:

• Simple protocol to verify polynomial constraints

‣ valid

‣ parties locally compute

[[x]](d) ⋅ [[y]](d) = [[x ⋅ y]](2d)

w ⇔ f1(w) = 0, …, fm(w) = 0

[[α]] = [[v]] +
m

∑
j=1

γj ⋅ fj([[w]])

pre-committed
sharing of 0

randomness
from the verifier

check
false positive proba

α = 0
1/ |𝔽 |

Using multiplication homomorphism

• Shamir’s secret sharing satisfies:

• Simple protocol to verify polynomial constraints

‣ valid

‣ parties locally compute

[[x]](d) ⋅ [[y]](d) = [[x ⋅ y]](2d)

w ⇔ f1(w) = 0, …, fm(w) = 0

[[α]] = [[v]] +
m

∑
j=1

γj ⋅ fj([[w]])
Soundness error

(dα

ℓ)
(N

ℓ)
+ p

pre-committed
sharing of 0

randomness
from the verifier

check
false positive proba

α = 0
1/ |𝔽 |

Using multiplication homomorphism

• Shamir’s secret sharing satisfies:

• Simple protocol to verify polynomial constraints

‣ valid

‣ parties locally compute

[[x]](d) ⋅ [[y]](d) = [[x ⋅ y]](2d)

w ⇔ f1(w) = 0, …, fm(w) = 0

[[α]] = [[v]] +
m

∑
j=1

γj ⋅ fj([[w]])
Soundness error

(dα

ℓ)
(N

ℓ)
+ p

pre-committed
sharing of 0

randomness
from the verifier

check
false positive proba

α = 0
1/ |𝔽 |

 ℓ ⋅ deg fj (1
|𝔽 |)

#α

Here:

Shorter signatures for MPCitH-based candidates

Original Size Our Variant Saving

Biscuit 4 758 B 4 048 B -15 %

MIRA 5 640 B 5 340 B -5 %

MiRitH-Ia 5 665 B 4 694 B -17 %

MiRitH-Ib 6 298 B 5 245 B -17 %

MQOM-31 6 328 B 4 027 B -37 %

MQOM-251 6 575 B 4 257 B -35 %

RYDE 5 956 B 5 281 B -11 %

SDitH 8 241 B 7 335 B -27 %

MQ over GF(4) 8 609 B 3 858 B -55 %

SD over GF(2) 11 160 B 7 354 B -34 %

SD over GF(2) 12 066 B 6 974 B -42 %

* N = 256

Shorter signatures for MPCitH-based candidates

Original Size Our Variant Saving

Biscuit 4 758 B 3 431 B

MIRA 5 640 B 4 314 B

MiRitH-Ia 5 665 B 3 873 B

MiRitH-Ib 6 298 B 4 250 B

MQOM-31 6 328 B 3 567 B

MQOM-251 6 575 B 3 418 B

RYDE 5 956 B 4 274 B

SDitH 8 241 B 5 673 B

MQ over GF(4) 8 609 B 3 301 B

SD over GF(2) 11 160 B 7 354 B -34 %

SD over GF(2) 12 066 B 6 974 B -42 %

* N = 256 * N = 2048

Shorter signatures for MPCitH-based candidates

Two very recent works :

• Baum, Beullens, Mukherjee, Orsini, Ramacher, Rechberger, Roy,
Scholl. One Tree to Rule Them All: Optimizing GGM Trees and
OWFs for Post-Quantum Signatures. https://ia.cr/2024/490

‣ General techniques to reduce the size of GGM trees

‣ Apply to TCitH-GGM (gain of ~500 B at 128-bit security)

• Bidoux, Feneuil, Gaborit, Neveu, Rivain. Dual Support
Decomposition in the Head: Shorter Signatures from Rank SD and
MinRank. https://ia.cr/2024/541

‣ New MPC protocols for TCitH / VOLEitH signatures based on
MinRank & Rank SD

https://ia.cr/2024/490
https://ia.cr/2024/541

Using packed secret sharing

• Shamir’s secret sharing can be packed

‣

‣

‣

• sharing of

• sharing of

• Packed sharing & Merkle trees witness size by

 interesting for statements with “medium size” witness

• E.g. an ISIS statement with

P(ω1) = x1 , … , P(ωs) = xs

P(ωs+1) = r1 , … , P(ωs+ℓ) = rℓ

[[x]]1 = P(e1) , … , [[x]]N = P(eN)

[[x]] + [[y]] = (x1, …, xs) + (y1, …, ys)

[[x]] ⋅ [[y]] = (x1, …, xs) ∘ (y1, …, ys)

≈ ÷ s
⇒

⃗t = A ⋅ ⃗e ∥ ⃗e ∥∞≤ β

Using packed secret sharing

• Shamir’s secret sharing can be packed

‣

‣

‣

• sharing of

• sharing of

• Packed sharing & Merkle trees witness size by

 interesting for statements with “medium size” witness

• E.g. an ISIS statement with

P(ω1) = x1 , … , P(ωs) = xs

P(ωs+1) = r1 , … , P(ωs+ℓ) = rℓ

[[x]]1 = P(e1) , … , [[x]]N = P(eN)

[[x]] + [[y]] = (x1, …, xs) + (y1, …, ys)

[[x]] ⋅ [[y]] = (x1, …, xs) ∘ (y1, …, ys)

≈ ÷ s
⇒

⃗t = A ⋅ ⃗e ∥ ⃗e ∥∞≤ β

Using packed secret sharing

• Shamir’s secret sharing can be packed

‣

‣

‣

• sharing of

• sharing of

• Packed sharing & Merkle trees witness size by

 interesting for statements with “medium size” witness

• E.g. an ISIS statement with

P(ω1) = x1 , … , P(ωs) = xs

P(ωs+1) = r1 , … , P(ωs+ℓ) = rℓ

[[x]]1 = P(e1) , … , [[x]]N = P(eN)

[[x]] + [[y]] = (x1, …, xs) + (y1, …, ys)

[[x]] ⋅ [[y]] = (x1, …, xs) ∘ (y1, …, ys)

≈ ÷ s
⇒

⃗t = A ⋅ ⃗e ∥ ⃗e ∥∞≤ β

Soundness error

(dα

ℓ)
(N

ℓ)
+ p

Using packed secret sharing

• Shamir’s secret sharing can be packed

‣

‣

‣

• sharing of

• sharing of

• Packed sharing & Merkle trees witness size by

 interesting for statements with “medium size” witness

• E.g. an ISIS statement with

P(ω1) = x1 , … , P(ωs) = xs

P(ωs+1) = r1 , … , P(ωs+ℓ) = rℓ

[[x]]1 = P(e1) , … , [[x]]N = P(eN)

[[x]] + [[y]] = (x1, …, xs) + (y1, …, ys)

[[x]] ⋅ [[y]] = (x1, …, xs) ∘ (y1, …, ys)

≈ ÷ s
⇒

⃗t = A ⋅ ⃗e ∥ ⃗e ∥∞≤ β

Soundness error

(dα

ℓ)
(N

ℓ)
+ p

Here: (ℓ + s − 1) ⋅ deg fj

Using packed secret sharing

• Shamir’s secret sharing can be packed

‣

‣

‣

• sharing of

• sharing of

• Packed sharing & Merkle trees witness size by

 interesting for statements with “medium size” witness

• E.g. an ISIS statement with

P(ω1) = x1 , … , P(ωs) = xs

P(ωs+1) = r1 , … , P(ωs+ℓ) = rℓ

[[x]]1 = P(e1) , … , [[x]]N = P(eN)

[[x]] + [[y]] = (x1, …, xs) + (y1, …, ys)

[[x]] ⋅ [[y]] = (x1, …, xs) ∘ (y1, …, ys)

≈ ÷ s
⇒

⃗t = A ⋅ ⃗e ∥ ⃗e ∥∞≤ β

Soundness error

(dα

ℓ)
(N

ℓ)
+ p

Here: (ℓ + s − 1) ⋅ deg fj

Using packed secret sharing

• Shamir’s secret sharing can be packed

‣

‣

‣

• sharing of

• sharing of

• Packed sharing & Merkle trees witness size by

 interesting for statements with “medium size” witness

• E.g. an ISIS statement with

P(ω1) = x1 , … , P(ωs) = xs

P(ωs+1) = r1 , … , P(ωs+ℓ) = rℓ

[[x]]1 = P(e1) , … , [[x]]N = P(eN)

[[x]] + [[y]] = (x1, …, xs) + (y1, …, ys)

[[x]] ⋅ [[y]] = (x1, …, xs) ∘ (y1, …, ys)

≈ ÷ s
⇒

⃗t = A ⋅ ⃗e ∥ ⃗e ∥∞≤ β

Soundness error

(dα

ℓ)
(N

ℓ)
+ p

Here: (ℓ + s − 1) ⋅ deg fj

TCitH-GGM vs. TCitH-MT

TCitH-GGM TCitH-MT

🎄 Smaller tree 🌲 Larger tree (~x2)

📦 No advantage of packed
sharing

📦 Takes advantage of packed
sharing

☑ Naturally enforce degree of
committed sharings

🔁 Need degree enforcing
commitment (+1 round)

🎯 Better for “small-size”
statements

🎯 Better for “medium-size”
statements

TCitH-GGM vs. TCitH-MT

TCitH-GGM TCitH-MT

🎄 Smaller tree 🌲 Larger tree (~x2)

📦 No advantage of packed
sharing

📦 Takes advantage of packed
sharing

☑ Naturally enforce degree of
committed sharings

🔁 Need degree enforcing
commitment (+1 round)

🎯 Better for “small-size”
statements

🎯 Better for “medium-size”
statements

TCitH-GGM vs. TCitH-MT

TCitH-GGM TCitH-MT

🎄 Smaller tree 🌲 Larger tree (~x2)

📦 No advantage of packed
sharing

📦 Takes advantage of packed
sharing

☑ Naturally enforce degree of
committed sharings

🔁 Need degree enforcing
commitment (+1 round)

🎯 Better for “small-size”
statements

🎯 Better for “medium-size”
statements

TCitH-GGM vs. TCitH-MT

TCitH-GGM TCitH-MT

🎄 Smaller tree 🌲 Larger tree (~x2)

📦 No advantage of packed
sharing

📦 Takes advantage of packed
sharing

☑ Naturally enforce degree of
committed sharings

🔁 Need degree enforcing
commitment (+1 round)

🎯 Better for “small-size”
statements

🎯 Better for “medium-size”
statements

Application: post-quantum
ring signatures

Post-quantum ring signatures

• Secret key

• One-way function

• Public key

• MPC protocol

w
f

y = f(w)
Π : [[w]] ↦ 0/1

✍ signature
scheme

TCitH

FS

Post-quantum ring signatures

• Secret key

• One-way function

• Public key

• MPC protocol

w
f

y = f(w)
Π : [[w]] ↦ 0/1

✍ signature
scheme

TCitH

FS

• Secret keys

• Public keys
• MPC protocol

w1, …, wr

y1, …, yr

Π′ : [[wj*]], [[j*]] ↦ 0/1

Post-quantum ring signatures

• Secret key

• One-way function

• Public key

• MPC protocol

w
f

y = f(w)
Π : [[w]] ↦ 0/1

✍ signature
scheme

TCitH

FS

• Secret keys

• Public keys
• MPC protocol

w1, …, wr

y1, …, yr

Π′ : [[wj*]], [[j*]] ↦ 0/1

💍 ✍ ring
signature
scheme

TCitH

FS

Post-quantum ring signatures

💡 Idea:

‣ One-hot encoding of

‣ computes

🤔 Problem: including to the witness signature size

Solution: s.t.

 signature size

j*
s = (0,…,0, sj* := 1, 0,…,0)

Π′ [[yj*]] = ∑
r

j=1
[[sj]] ⋅ yj

[[s]] ⇒ 𝒪(r)

[[s(1)]], …, [[s(d)]] s = s1 ⊗ ⋯ ⊗ sd

⇒ 𝒪(d d r) ⇒ 𝒪(log r)

Post-quantum ring signatures

💡 Idea:

‣ One-hot encoding of

‣ computes

🤔 Problem: including to the witness signature size

Solution: s.t.

 signature size

j*
s = (0,…,0, sj* := 1, 0,…,0)

Π′ [[yj*]] = ∑
r

j=1
[[sj]] ⋅ yj

[[s]] ⇒ 𝒪(r)

[[s(1)]], …, [[s(d)]] s = s1 ⊗ ⋯ ⊗ sd

⇒ 𝒪(d d r) ⇒ 𝒪(log r)

Post-quantum ring signatures

💡 Idea:

‣ One-hot encoding of

‣ computes

🤔 Problem: including to the witness signature size

Solution: s.t.

 signature size

j*
s = (0,…,0, sj* := 1, 0,…,0)

Π′ [[yj*]] = ∑
r

j=1
[[sj]] ⋅ yj

[[s]] ⇒ 𝒪(r)

[[s(1)]], …, [[s(d)]] s = s1 ⊗ ⋯ ⊗ sd

⇒ 𝒪(d d r) ⇒ 𝒪(log r)

Post-quantum ring signatures

💡 Idea:

‣ One-hot encoding of

‣ computes

🤔 Problem: including to the witness signature size

🛠 Solution: s.t.

 signature size

j*
s = (0,…,0, sj* := 1, 0,…,0)

Π′ [[yj*]] = ∑
r

j=1
[[sj]] ⋅ yj

[[s]] ⇒ 𝒪(r)

[[s(1)]], …, [[s(d)]] s = s(1) ⊗ ⋯ ⊗ s(d)

⇒ 𝒪(d d r) ⇒ 𝒪(log r)

Post-quantum ring signatures

Protocol

 Input: ,

1. Locally compute

2. Locally compute

3. Check that , satisfy using

4. Check that is the sharing of a one-hot encoding

Π′

[[w]] [[s(1)]], …, [[s(d)]]
[[s]] = [[s1]] ⊗ ⋯ ⊗ [[sd]]
[[yj*]] = ∑

r

j=1
[[sj]] ⋅ yj

[[w]] [[yj*]] f(w) = yj* Π
[[s]]

Post-quantum ring signatures

Protocol

 Input: ,

1. Locally compute

2. Locally compute

3. Check that , satisfy using

4. Check that is the sharing of a one-hot encoding

Π′

[[w]] [[s(1)]], …, [[s(d)]]
[[s]] = [[s1]] ⊗ ⋯ ⊗ [[sd]]
[[yj*]] = ∑

r

j=1
[[sj]] ⋅ yj

[[w]] [[yj*]] f(w) = yj* Π
[[s]]

Post-quantum ring signatures

Protocol

 Input: ,

1. Locally compute

2. Locally compute

3. Check that , satisfy using

4. Check that is the sharing of a one-hot encoding

Π′

[[w]] [[s(1)]], …, [[s(d)]]
[[s]] = [[s1]] ⊗ ⋯ ⊗ [[sd]]
[[yj*]] = ∑

r

j=1
[[sj]] ⋅ yj

[[w]] [[yj*]] f(w) = yj* Π
[[s]]

Post-quantum ring signatures

Protocol

 Input: ,

1. Locally compute

2. Locally compute

3. Check that , satisfy using

4. Check that is the sharing of a one-hot encoding

Π′

[[w]] [[s(1)]], …, [[s(d)]]
[[s]] = [[s1]] ⊗ ⋯ ⊗ [[sd]]
[[yj*]] = ∑

r

j=1
[[sj]] ⋅ yj

[[w]] [[yj*]] f(w) = yj* Π
[[s]]

Post-quantum ring signatures

Protocol

 Input: ,

1. Locally compute

2. Locally compute

3. Check that , satisfy using

4. Check that is the sharing of a one-hot encoding

Π′

[[w]] [[s(1)]], …, [[s(d)]]
[[s]] = [[s1]] ⊗ ⋯ ⊗ [[sd]]
[[yj*]] = ∑

r

j=1
[[sj]] ⋅ yj

[[w]] [[yj*]] f(w) = yj* Π
[[s]]

Post-quantum ring signatures

Protocol

 Input: ,

1. Locally compute

2. Locally compute

3. Check that , satisfy using

4. Check that is the sharing of a one-hot encoding

Π′

[[w]] [[s(1)]], …, [[s(d)]]
[[s]] = [[s1]] ⊗ ⋯ ⊗ [[sd]]
[[yj*]] = ∑

r

j=1
[[sj]] ⋅ yj

[[w]] [[yj*]] f(w) = yj* Π
[[s]]

🛠 Simple
MPC protocol

Post-quantum ring signatures

Protocol

 Input: ,

1. Locally compute

2. Locally compute

3. Check that , satisfy using

4. Check that is the sharing of a one-hot encoding

Π′

[[w]] [[s(1)]], …, [[s(d)]]
[[s]] = [[s1]] ⊗ ⋯ ⊗ [[sd]]
[[yj*]] = ∑

r

j=1
[[sj]] ⋅ yj

[[w]] [[yj*]] f(w) = yj* Π
[[s]]

⚠ must be adapted to
use instead of

Π
[[yj*]] yj*

🛠 Simple
MPC protocol

Post-quantum ring signatures

Protocol

 Input: ,

1. Locally compute

2. Locally compute

3. Check that , satisfy using

4. Check that is the sharing of a one-hot encoding

Π′

[[w]] [[s(1)]], …, [[s(d)]]
[[s]] = [[s1]] ⊗ ⋯ ⊗ [[sd]]
[[yj*]] = ∑

r

j=1
[[sj]] ⋅ yj

[[w]] [[yj*]] f(w) = yj* Π
[[s]]

⚠ must be adapted to
use instead of

Π
[[yj*]] yj*

🛠 Simple
MPC protocol

⚠ Sharing degrees
increase

Post-quantum ring signatures

Protocol

 Input: ,

1. Locally compute

2. Locally compute

3. Check that , satisfy using

4. Check that is the sharing of a one-hot encoding

Π′

[[w]] [[s(1)]], …, [[s(d)]]
[[s]] = [[s1]] ⊗ ⋯ ⊗ [[sd]]
[[yj*]] = ∑

r

j=1
[[sj]] ⋅ yj

[[w]] [[yj*]] f(w) = yj* Π
[[s]]

💍 ✍ ring
signature
scheme

TCitH / FS

⚠ must be adapted to
use instead of

Π
[[yj*]] yj*

🛠 Simple
MPC protocol

⚠ Sharing degrees
increase

Post-quantum ring signatures

Post-quantum ring signatures
Application to
MQ, SD, AES

Post-quantum ring signatures
Application to
MQ, SD, AES

Size range: 5–13 kB
 for |ring|=220

Post-quantum ring signatures
Application to
MQ, SD, AES

Size range: 5–13 kB
 for |ring|=220

Previous works:
 14 kB for |ring|=
 no / slow implementations

≥ 210

Post-quantum ring signatures

Relation to other
proof systems

Connections to other proof systems

MPCitH with additive
sharing, e.g.

[KKW18,BN20,DOT21]

Connections to other proof systems

MPCitH with additive
sharing, e.g.

[KKW18,BN20,DOT21]

Original TCitH
framework

Application of Shamir’s
secret sharing with Merkle

tree commitments

Connections to other proof systems

MPCitH with additive
sharing, e.g.

[KKW18,BN20,DOT21]

Original TCitH
framework

Application of Shamir’s
secret sharing with Merkle

tree commitments

General TCitH
framework

 + GGM variant
 + packed secret sharing
 + non-linear MPC protocols
 + degree-enforcing commitment

Connections to other proof systems

MPCitH with additive
sharing, e.g.

[KKW18,BN20,DOT21]

Original TCitH
framework

Application of Shamir’s
secret sharing with Merkle

tree commitments

General TCitH
framework

VOLE-in-the-Head

[BBDG+23]

VOLEitH = TCitH-GGM
with and large

field embedding
s = ℓ = 1

 + GGM variant
 + packed secret sharing
 + non-linear MPC protocols
 + degree-enforcing commitment

Connections to other proof systems

MPCitH with additive
sharing, e.g.

[KKW18,BN20,DOT21]

Original TCitH
framework

Application of Shamir’s
secret sharing with Merkle

tree commitments

General TCitH
framework

 + GGM variant
 + packed secret sharing
 + non-linear MPC protocols
 + degree-enforcing commitment

VOLE-in-the-Head

[BBDG+23]
Ligero

[AHIV17,AHIV23]

VOLEitH = TCitH-GGM
with and large

field embedding
s = ℓ = 1

TCitH-MT with =
optimised version of the
Ligero concrete scheme

ΠLigero

Thank you!

References

[AGHJY23] Aguilar Melchor, Gama, Howe, Hülsing, Joseph, Yue: “The Return of the SDitH”
(EUROCRYPT 2023)

[BBMORRRS24] Baum, Beullens, Mukherjee, Orsini, Ramacher, Rechberger, Roy, Scholl: “One
Tree to Rule Them All: Optimizing GGM Trees and OWFs for Post-Quantum Signatures”
https://ia.cr/2024/490

[BFGNR24] Bidoux, Feneuil, Gaborit, Neveu, Rivain. "Dual Support Decomposition in the
Head: Shorter Signatures from Rank SD and MinRank” https://ia.cr/2024/541

[CDI05] Cramer, Damgard, Ishai: “Share conversion, pseudorandom secret-sharing and
applications to secure computation” (TCC 2005)

[FR22] Thibauld Feneuil, Matthieu Rivain: "Threshold Linear Secret Sharing to the Rescue of
MPC-in-the-Head" https://ia.cr/2022/1407 (ASIACRYPT 2023)

[FR23] Thibauld Feneuil, Matthieu Rivain: "Threshold Computation in the Head: Improved
Framework for Post-Quantum Signatures and Zero-Knowledge Arguments" https://ia.cr/
2023/1573

[ISN89] Ito, Saito, Nishizeki: “Secret sharing scheme realizing general access structure”
(Electronics and Communications in Japan 1989)

[KKW18] Katz, Kolesnikov, Wang: "Improved Non-Interactive Zero Knowledge with
Applications to Post-Quantum Signatures" (CCS 2018)

https://ia.cr/2024/490
https://ia.cr/2024/541
https://ia.cr/2022/1407
https://ia.cr/2023/1573
https://ia.cr/2023/1573

