
Keynote: White-Box Cryptography

Matthieu Rivain

PHISIC Workshop, 4 Oct 2016



Outline

∎ Context:

▸ white-box crypto: big trend in the industry
▸ cryptographic obfuscation: big trend in the scientific literature
▸ huge gap between both

∎ This presentation:

▸ what is (cryptographic) obfuscation?
▸ what is white-box cryptography?
▸ white-box cryptography in practice



What is (cryptographic) obfuscation?



What is obfuscation?

Obfuscation is the deliberate act of creating obfuscated code that
is difficult for humans to understand.

Obfuscators make reverse engineering more difficult but do not
alter the behavior of the obfuscated application.

– wikipedia

⇒ make a program unintelligible while preserving its functionality



What is obfuscation?

Obfuscation is the deliberate act of creating obfuscated code that
is difficult for humans to understand.

Obfuscators make reverse engineering more difficult but do not
alter the behavior of the obfuscated application.

– wikipedia

⇒ make a program unintelligible while preserving its functionality



Defining obfuscation
Program

∎ word in a formal (programming) language P ∈ L
∎ function execute ∶ L × {0,1}∗ → {0,1}∗

execute ∶ (P, in)↦ out

∎ P implements a function f ∶ A→ B if

∀a ∈ A ∶ execute(P,a) = f(a)

denoted P ≡ f
∎ P1 and P2 are functionally equivalent if

P1 ≡ f ≡ P2 for some f

denoted P1 ≡ P2



Defining obfuscation

Obfuscator

∎ algorithm O mapping a program P to a program O(P ) st:

∎ functionality: O(P ) ≡ P
∎ efficiency: O(P ) is efficiently executable

∎ security:
▸ (informal) O(P ) is hard to understand
▸ (informal) O(P ) protects its data

How to formally define the security property?



Virtual Black-Box (VBB) Obfuscation
∎ O(P ) reveals nothing more than the I/O behavior of P

∎ Any adversary on O(P ) can be simulated with a black-box
access to P

AO(P )

{
0

1

Adversary

' S⊥
{
0

1

P

x P (x)

Simulator

∣Pr[A(O(P ))) = 1] −Pr[SP (�) = 1]∣ ≤ ε



Impossibility result

∎ VBB-O does not exist on general programs (CRYPTO’01)

∎ Counterexample:

uint128_t cannibal (prog P, uint128_t password)

{

uint128_t secret1 = 0xe075b4f4eabf4377c1aa7202c8cc1ccb;

uint128_t secret2 = 0x94ff8ec818de3bd8223a62e4cb7c84a4;

if (password == secret1) return secret2;

if (execute(P, null , secret1) == secret2) return secret1;

return 0;

}

O(cannibal)(O(cannibal),0) = secret1



Indistinguishability obfuscation (iO)

∎ Restricted to circuits i.e. programs without branches/loops

∎ For any two programs P1 and P2 st P1 ≡ P2 and ∣P1∣ = ∣P2∣,
the obfuscated programs O(P1) and O(P2) are
indistinguishable

'AO(P1)

{
0

1
AO(P2)

{
0

1

∣Pr[A(O(P1)) = 1] −Pr[A(O(P2)) = 1]∣ ≤ ε

∎ Best possible obfuscation in some sense



What is white-box cryptography?



What is white-box cryptography?

“the attacker is assumed to have full access to the encrypting
software and control of the execution environment”

⇒ obfuscation restricted to encryption (or another crypto primitive)

“Our main goal is to make key extraction difficult.”

⇒ relaxed security requirements

“While an attacker can clearly make use of the software itself,
forcing an attacker to use the installed instance is often of value to

DRM systems providers.”

⇒ encryption software ≠ secret key

– Chow et al. (DRM 2002)



What is white-box cryptography?

“the attacker is assumed to have full access to the encrypting
software and control of the execution environment”
⇒ obfuscation restricted to encryption (or another crypto primitive)

“Our main goal is to make key extraction difficult.”

⇒ relaxed security requirements

“While an attacker can clearly make use of the software itself,
forcing an attacker to use the installed instance is often of value to

DRM systems providers.”

⇒ encryption software ≠ secret key

– Chow et al. (DRM 2002)



What is white-box cryptography?

“the attacker is assumed to have full access to the encrypting
software and control of the execution environment”
⇒ obfuscation restricted to encryption (or another crypto primitive)

“Our main goal is to make key extraction difficult.”
⇒ relaxed security requirements

“While an attacker can clearly make use of the software itself,
forcing an attacker to use the installed instance is often of value to

DRM systems providers.”

⇒ encryption software ≠ secret key

– Chow et al. (DRM 2002)



What is white-box cryptography?

“the attacker is assumed to have full access to the encrypting
software and control of the execution environment”
⇒ obfuscation restricted to encryption (or another crypto primitive)

“Our main goal is to make key extraction difficult.”
⇒ relaxed security requirements

“While an attacker can clearly make use of the software itself,
forcing an attacker to use the installed instance is often of value to

DRM systems providers.”
⇒ encryption software ≠ secret key

– Chow et al. (DRM 2002)



What is white-box cryptography?

∎ Obfuscation restricted to a specific class of crypto primitives

∎ Typically, SPN ciphers:

m LL

k1

S

S

S

S

S

S

S

S

LL

k2

S

S

S

S

S

S

S

S

LL

k3

S

S

S

S

S

S

S

S

LL

kn

S

S

S

S

S

S

S

S

c

∎ Running example: F = {AESk(⋅) ∣ k ∈ {0,1}128}
∎ White-box obfuscator: k ↦WB-AESk ≡ AESk(⋅)



VBB-obfuscated AES
∎ Strongest form of WBC

AWB-AESk

{
0

1

Adversary

' S⊥
{
0

1

AESk(·)

m c

Simulator

∎ Impossibility result does not apply

∎ The AES-LUT program achieves VBB
▸ but does not fit into 109 ⋅ 109 ⋅ 109 TB

∎ How to build a compact VBB AES implementation?
▸ could be impossible to achieve



iO-obfuscated AES

∎ Is this a good obfuscator?

1. k ← extract-key(Pk)
2. return reference implem AESk

▸ This is an iO AES obfuscator!

∎ If key-extraction is difficult on some Pk

▸ key-extraction is still difficult on O(Pk)
▸ key-extraction is difficult on any O(P ′

k) ≃ O(Pk)
∎ So what does iO-AES means?

▸ not clear!



Defining WBC

simple
AES

VBB
AES

iO
AES

?

Obfuscation scale

∎ We need something
▸ relaxed compared to VBB
▸ meaningful compared to iO

∎ SAC 2013: “White-Box Security Notions for Symmetric
Encryption Schemes”



Defining WBC

simple
AES

VBB
AES

iO
AES

?

Obfuscation scale

further white-box

security notions

∎ We need something
▸ relaxed compared to VBB
▸ meaningful compared to iO ⇒ further notions

∎ SAC 2013: “White-Box Security Notions for Symmetric
Encryption Schemes”



What could we expect?

∎ The least requirement: key extraction must be difficult

AWB-AESk k

∎ Code-lifting cannot be avoided

∎ It should be different to have WB-AESk and k

∎ Using the software should constrain the adversary



Incompressibility

∎ Make the implementation huge and incompressible

A
WB-AESk

> 10 GB

AESk
< 10 KB

∎ Several new primitives based on this idea
▸ Toy example (SAC 2013): RSA with large public exponent
▸ Block-ciphers based on large tables (ASIACRYPT 2016)
▸ Big-key cipher (CRYPTO 2016)



Incompressibility

∎ Make the implementation huge and incompressible

A
WB-AESk

> 10 GB

AESk
< 10 KB

∎ Several new primitives based on this idea
▸ Toy example (SAC 2013): RSA with large public exponent
▸ Block-ciphers based on large tables (ASIACRYPT 2016)
▸ Big-key cipher (CRYPTO 2016)



One-wayness

∎ Make the implementation one-way

AWB-AESk

m

c

m

∎ Namely: turning AES into a public-key cryptosystem

∎ PK crypto with light-weight private operations



Traceability

∎ Include a tracing mechanism

AWB-AESk,id Π ≡ AESk(·) T id

∃ T st ∀A ∶ WB-AESk,id ↦ Π ≡ AESk(⋅) ⇒ T (Π) = id

∎ Possible use case: pay-TV



Traceability

∎ Include a tracing mechanism

AWB-AESk,id Π ≡ AESk(·) T

WB-AESk,id1

WB-AESk,id2

WB-AESk,idt

id ∈ {id1, id2, . . . , idt}

∃ T st ∀A ∶ WB-AESk,id ↦ Π ≡ AESk(⋅) ⇒ T (Π) = id

∎ Possible use case: pay-TV



White-box cryptography in practice



Original white-box AES

∎ SAC 2002: “White-Box Cryptography and an AES
Implementation” (Chow et al. )

∎ First step: represent AES as a network of look-up tables

▸ Each AES round composed of 4 sub-rounds of the form:

(y0, y1, y2, y3) =
⎛
⎜⎜⎜
⎝

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎞
⎟⎟⎟
⎠
⊗

⎛
⎜⎜⎜
⎝

S(x0 ⊕ k0)
S(x5 ⊕ k5)
S(x10 ⊕ k10)
S(x15 ⊕ k15)

⎞
⎟⎟⎟
⎠



Original white-box AES

∎ This rewrites:

(y0, y1, y2, y3) = T0[x0]⊕ T5[x5]⊕ T10[x10]⊕ T15[x15]
where Ti ∶ 8 bits→ 32 bits defined as

T0[x] = S(x⊕ k0) × (02 01 01 03)T
T5[x] = S(x⊕ k5) × (03 02 01 01)T
T10[x] = S(x⊕ k10) × (01 03 02 01)T
T15[x] = S(x⊕ k15) × (01 01 03 02)T

∎ XORs performed with a table Txor ∶ 8 bits→ 4 bits

Txor[x0∣∣x1] = x0 ⊕ x1



Original white-box AES

Illustration: J. Muir “A Tutorial on White-box AES” (ePrint 2013)



Original white-box AES

Illustration: J. Muir “A Tutorial on White-box AES” (ePrint 2013)



Original white-box AES

∎ Second step: randomize the look-up tables

▸ Each table T is replaced by

T ′ = g ○ T ○ f−1
where f, g are random encodings

▸ For two connected tables T , R

T ′ = g ○ T ○ f−1
R′ = h ○R ○ g−1 ⇒ R′ ○ T ′ = h ○ (R ○ T ) ○ f−1

∎ Intuition: encoded tables bring no information on the key

▸ true for a single table

▸ true for a chain g ○ Tn ○ Tn−1 ○ ⋯ ○ T1 ○ f−1
▸ not true for the larger picture



Original white-box AES

∎ Consider the encoded sub-round (32 bits → 32 bits):

Illustration: Y. De Mulder (presentation SAC 2013)

∎ The four key bytes can be easily extracted from it



Original white-box AES

∎ For instance, a simple collision attack:

02 ⋅ S0(α)⊕ 03 ⋅ S1(0) = 02 ⋅ S0(0)⊕ 03 ⋅ S1(β)

where S0(x) = S(P0(x)⊕ k0) and S1(x) = S(P1(x)⊕ k1)

Illustration: Y. De Mulder (presentation SAC 2013)



A white-box cemetery
∎ Many attacks on the original design:

▸ First break: BGE attack (Billet et al. SAC 2004)
▸ Generic attack on WB SPN ciphers (Michiels et al. SAC 2008)
▸ Improved BGE attack (Lepoint et al. SAC 2013)
▸ Collision attack (Lepoint et al. SAC 2013)
▸ Classical fault attacks (e.g. Piret-Quisquater, CHES 2003)
▸ Differential Computational Analysis (Bos et al. CHES 2016)

∎ Other attempts:
▸ Perturbed WB-AES using MV crypto (Bringer et al. ePrint 2006)

⇒ broken (De Mulder et al. INDOCRYPT 2010)

▸ WB-AES based on wide linear encodings (Xiao-Lai et al. CSA 2009)

⇒ broken (De Mulder et al. SAC 2012)

▸ WB-AES based on dual AES ciphers (Karroumi, ICISC 2010)

⇒ broken (Lepoint et al. SAC 2013)

∎ Not better for white-box DES...



White-box crypto today

∎ All published WB implementations have been broken

∎ Yet the industrial need exists
▸ Digital content protection (pay-TV, DRM)
▸ Mobile payments
▸ Software protection

∎ Advent of the secret specification paradigm
▸ mix of WBC techniques and code obfuscation
▸ attackers don’t know how the implementation was generated
▸ this is called security through obscurity
▸ Kerckhoffs / Shannon must be turning in their graves!

∎ Development of generic attacks against WBC
▸ Differential Computational Analysis (DCA)
▸ Differential Fault Analysis (DFA)



Differential Computational Analysis
∎ Suggested by NXP / Riscure

▸ Presentation at BalckHat 2015
▸ Best paper award CHES 2016

∎ Dynamically record all the data-dependent information during
an execution

▸ memory writes / loads (addresses + values)
▸ logical instructions (operands + result)
▸ program counter ⇒ re-synchronization

⇒ computational trace

∎ Apply DPA techniques to computational traces

score[k̂] = ρ(Bk̂,CTk)
▸ Bk̂ : bit computed if k = k̂
▸ CTk : computational traces



Differential Computational Analysis
∎ Example – trace build from 8-bit data reads:

∎ Corresponding trace with Hamming weights:

∎ Corresponding bits:

Traces: J. Bos (presentation CHES 2016)



Differential Computational Analysis

∎ Advantages of DCA:
▸ generic / not specific to some WB design
▸ does not require reverse engineering efforts
▸ defeats all attempts of code-obfuscation
▸ seems to work remarkably well in practice

∎ Why does it work?
▸ in most WB implementations, randomization is static
▸ encodings are generated once and hardcoded
▸ we might have

ρ(xi,Enc[x]j) ≫ 0

▸ especially with 4-bit encodings

Enc[x0 ∣∣ x1] = Enc[x0] ∣∣ Enc[x1]



Differential Computational Analysis
∎ Simple correlation experiment (1000 samples)

▸ Target variable: Enc[S(x⊕ k)] (4-bit encoding)

▸ Model: MSB of S(x⊕ k̂)

5 10 15 20

-0.4

-0.2

0.2

0.4

Bit 0

5 10 15 20

-0.4

-0.2

0.2

0.4

Bit 1

5 10 15 20

-0.4

-0.2

0.2

0.4

Bit 2

5 10 15 20

-0.4

-0.2

0.2

Bit 3



Differential Computational Analysis
∎ With another (4-bit) encoding:

5 10 15 20

-0.2

0.2

0.4

Bit 0

5 10 15 20

-0.4

-0.2

0.2

Bit 1

5 10 15 20

-0.4

-0.2

0.2

0.4

Bit 2

5 10 15 20

-0.4

-0.2

0.2

0.4

Bit 3

∎ Most of the time 1, 2, or 3 bits leak

∎ For 8-bit encodings: correlation to weak



Countermeasures?

∎ We know a lot of countermeasures against DPA / DFA

∎ It might be hard to translate them to the white-box context

∎ Attackers have a full control of the implementation
▸ any external RNG can be set to 0
▸ easy synchronization of traces (all can be monitored)
▸ dummy operations can be easily detected and removed
▸ coherence checks can be bypassed

∎ Only pseudorandomness based on the plaintext is possible

∎ Countermeasures must be obfuscated to be hard to remove



Conclusion



Conclusion

∎ WBC can be define as a restriction of cryptographic
obfuscation

▸ subset of programs (e.g. given crypto primitive)
▸ relaxed security notions

∎ More work is needed to
▸ refine / define alternative security notions
▸ build new candidate white-box implementations
▸ analyze DCA / DFA against WBC
▸ translate existing countermeasures to the white-box context

∎ Open question: who beats who?
▸ secret-spec designer vs. state-of-the-art cryptanalyst



Interested in white-box crypto?

∎ WhibOx 2016, white-box cryptography and obfuscation
14 Aug. 2016, UCSB

https://www.cryptoexperts.com/whibox2016/

∎ Ecrypt white-box challenge, coming soon
▸ submit your (secret-design) white-box AES
▸ try to break submitted implementations

∎ Visit CryptoExperts website:

https://www.cryptoexperts.com/technologies/white-box/

https://www.cryptoexperts.com/whibox2016/
https://www.cryptoexperts.com/technologies/white-box/


Questions ?


	What is (cryptographic) obfuscation?
	What is white-box cryptography?
	White-box cryptography in practice
	Conclusion

