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Abstract. Implementations of cryptographic algorithms are vulnerable to Side Channel Analysis (SCA).
To counteract it, masking schemes are usually involved which randomize key-dependent data by the ad-
dition of one or several random value(s) (the masks). When dth-order masking is involved (i.e. when d
masks are used per key-dependent variable), the complexity of performing an SCA grows exponentially
with the order d. The design of generic dth-order masking schemes taking the order d as security param-
eter is therefore of great interest for the physical security of cryptographic implementations. This paper
presents the first generic dth-order masking scheme for AES with a provable security and a reason-
able software implementation overhead. Our scheme is based on the hardware-oriented masking scheme
published by Ishai et al. at Crypto 2003. Compared to this scheme, our solution can be efficiently im-
plemented in software on any general-purpose processor. This result is of importance considering the
lack of solution for d > 3.

1 Introduction

Side Channel Analysis exploits information that leaks from physical implementations of cryp-
tographic algorithms. This leakage (e.g. the power consumption or the electro-magnetic em-
anations) may indeed reveal information on the data manipulated by the implementation.
Some of these data are sensitive in the sense that they are related to the secret key, and the
leaking information about them enables efficient key-recovery attacks [7, 19].

Due to the very large variety of side channel attacks reported against cryptosystems and
devices, important efforts have been done to design countermeasures with provable security.
They all start from the assumption that a cryptographic device can keep at least some secrets
and that only computation leaks [25]. Based on these assumptions, two main approaches have
been followed. The first one consists in designing new cryptographic primitives inherently re-
sistant to side channel attacks. In [25], a very powerful side channel adversary is considered
who has access to the whole internal state of the ongoing computation. In such a model, the
authors show that if a physical one-way permutation exists which does not leak any infor-
mation, then it can be used in the pseudo-random number generator (PRNG) construction
proposed in [4] to give a PRNG provably secure against the aforementioned side channel ad-
versary. Unfortunately, no such leakage-resilient one-way permutation is known at this day.
Besides, the obtained construction is quite inefficient since each computation of the one-way
permutation produces one single random bit. To get more practical constructions, further
works focused on designing primitives secure against a limited side channel adversary [13].
The definition of such a limited adversary is inspired by the bounded retrieval model [10, 22]
which assumes that the device leaks a limited amount of information about its internal state
for each elementary computation. In such a setting, the block cipher based PRNG construc-
tion proposed in [30] is provably secure assuming that the underlying cipher is ideal. Other
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constructions were proposed in [13,31] which do not require such a strong assumption but are
less efficient [40]. The main limitations of these constructions is that they do not enable the
choice of an initialization vector (otherwise the security proofs do not hold anymore) which
prevents their use for encryption with synchronization constraints or for challenge-response
protocols [40]. Moreover, as they consist in new constructions, these solutions do not allow
for the protection of the implementation of standard algorithms such as DES or AES [14,15].

The second approach to design countermeasures provably secure against side channel
attacks consists in applying secret sharing schemes [2,39]. In such schemes, the sensitive data
is randomly split into several shares in such a way that a chosen number (called the threshold)
of these shares is required to retrieve any information about the data. When the SCA threat
appeared, secret sharing was quickly identified as a pertinent protection strategy [6, 17] and
numerous schemes (often called masking schemes) were published that were based on this
principle (see for instance [1,3,18,23,26,29,34,38]). Actually, this approach is very close to the
problem of defining Multi Party Communication (MPC) schemes (see for instance [9,12]) but
the resources and constraints differ in the two contexts (e.g. MPC schemes are often based on
a trusted dealer who does not exist in the SCA context). A first advantage of this approach is
that it can be used to secure standard algorithms such as DES and AES. A second advantage
is that dth-order masking schemes, for which sensitive data are split into d + 1 shares (the
threshold being d + 1), are sound countermeasures to SCA in realistic leakage model. This
fact has been formally demonstrated by Chari et al. [6] who showed that the complexity
of recovering information by SCA on a bit shared into several pieces grows exponentially
with the number of shares. As a direct consequence of this work, the number of shares (or
equivalently of masks) in which sensitive data are split is a sound security parameter of the
resistance of a countermeasures against SCA.

The present paper deals with the problem of defining an efficient masking scheme to
protect the implementation of the AES block cipher [11]. Until now, most of works published
on this subject have focused on first-order masking schemes where sensitive variables are
masked with a single random value (see for instance [1, 3, 23, 26, 29]). However, this kind
of masking have been shown to be efficiently breakable in practice by second-order SCA
[24,27,42]. To counteract those attacks, higher-order masking schemes must be used but a very
few have been proposed. A first method has been introduced by Ishai et al. [18] which enables
to protect an implementation at any chosen order. Unfortunately, it is not suited for software
implementations and it induces a prohibitive overhead for hardware implementations. A
scheme devoted to secure the software implementation of AES at any chosen order has been
proposed by Schramm and Paar [38] but it was subsequently shown to be secure only in the
second-order case [8]. Alternative second-order masking schemes with provable security were
further proposed in [34], but no straightforward extension of them exist to get efficient and
secure masking scheme at any order. Actually, at this day, no method exists in the literature
that enables to mask an AES implementation at any chosen order d > 3 with a practical
overhead; the present paper fills this gap.



2 Preliminaries on Higher-Order Masking

2.1 Basic Principle

When higher-order masking is involved to secure the physical implementation of a crypto-
graphic algorithm, every sensitive variable x occurring during the computation is randomly
split into d + 1 shares x0, . . . , xd in such a way that the following relation is satisfied for a
group operation ⊥:

x0 ⊥ x1 ⊥ · · · ⊥ xd = x . (1)

In the rest of the paper, we shall consider that ⊥ is the exclusive-or (XOR) operation denoted
by ⊕. Usually, the d shares x1, . . . , xd (called the masks) are randomly picked up and the
last one x0 (called the masked variable) is processed such that it satisfies (1). When d random
masks are involved per sensitive variable the masking is said to be of order d.

Assuming that the masks are uniformly distributed, masking renders every intermediate
variable of the computation statistically independent of any sensitive variable. As a result,
classical side channel attacks exploiting the leakage related to a single intermediate variable
are not possible anymore. However, a dth-order masking is always theoretically vulnerable
to (d + 1)th-order SCA which exploits the leakages related to d + 1 intermediate variables
at the same time [24, 37, 38]. Indeed, the leakages resulting from the d + 1 shares (i.e. the
masked variable and the d masks) are jointly dependent on the sensitive variable. Neverthe-
less, such attacks become impractical as d increases, which makes higher-order masking a
sound countermeasure.

2.2 Soundness of Higher-Order Masking

The soundness of higher-order masking was formally demonstrated by Chari et al. in [6].
They assume a simplified but still realistic leakage model where a bit b is masked using d
random bits x1, . . . , xd such that the masked bit is defined as x0 = b ⊕ x1 ⊕ · · · ⊕ xd. The
adversary is assumed to be provided with observations of d + 1 leakage variables Li, each
one corresponding to a share xi. For every i, the leakage is modelled as Li = xi + Ni where
the noises Ni’s are assumed to have Gaussian distributions N (µ, σ2) and to be mutually
independent. Under this leakage model, they show that the number of samples q required
by the adversary to distinguish the distribution (L0, . . . , Ld|b = 0) from the distribution
(L0, . . . , Ld|b = 1) with a probability at least α satisfies:

q > σd+δ (2)

where δ = 4 logα/ log σ. This result encompasses all the possible side-channel distinguishers
and hence formally states the resistance against every kind of side channel attack. Although
the model is simplified, it could probably be extended to more common leakage models such
as the Hamming weight/distance model. The point is that if an attacker observes noisy side
channel information about d + 1 shares corresponding to a variable masked with d random
masks, the number of samples required to retrieve information about the unmasked variable
is lower bounded by an exponential function of the masking order whose base is related to the
noise standard deviation. This formally demonstrates that higher-order masking is a sound
countermeasure especially when combined with noise. Many works also made this observation
in practice for particular side channel distinguishers (see for instance [37,38,41]).



2.3 Higher-Order Masking Schemes

When dth-order masking is involved in protecting a block cipher implementation, a so-called
dth-order masking scheme (or simply a masking scheme if there is no ambiguity on d) must
be designed to enable computation on masked data. In order to be complete and secure, the
scheme must satisfy the two following properties:

– completeness: at the end of the computation, the sum of the d shares must yield the
expected ciphertext (and more generally each masked transformation must result in a set
of shares whose sum equal the correct intermediate result),

– dth-order SCA security: every tuple of d or less intermediate variables must be independent
of any sensitive variable.

If the dth-order security property is satisfied, then no attack of order lower than d + 1 is
possible and we benefit from the security bound (2).

Most block cipher structures (e.g. AES or DES) alternate several rounds composed of a key
addition, one or several linear transformation(s), and a non-linear transformation. The main
difficulty in designing masking schemes for such block ciphers lies in masking the nonlinear
transformations. Many solutions have been proposed to deal with this issue but the design of
a dth-order secure scheme for d > 1 has quickly been recognized as a difficult problem by the
community. As mentioned above, only three methods exist in the literature that have been
respectively proposed by Ishai, Sahai and Wagner [18], by Schramm and Paar [38] (secure
only for d 6 2) and by Rivain, Dottax and Prouff [34] (dedicated to d = 2). Among them,
only [18] can be applied to secure a non-linear transformation at any order d. This scheme is
recalled in the next section.

2.4 The Ishai-Sahai-Wagner Scheme

In [18], Ishai et al. propose a higher-order masking scheme (referred to as ISW in this paper)
enabling to secure the hardware implementation of any circuit at any chosen order d. They
describe a way to transform the circuit to protect into a new circuit (dealing with masked
values) such that no subset of d of its wires reveals information about the unmasked values3.
For such a purpose, they assume without loss of generality that the circuit to protect is exclu-
sively composed of NOT and AND gates. Securing a NOT for any order d is straightforward
since x =

⊕
i xi implies NOT(x) = NOT(x0)⊕x1 · · · ⊕xd. The main difficulty is therefore to

secure the AND gates. To answer this issue, Ishai et al. suggest the following elegant solution.

Secure logical AND. Let a an b be two bits and let c denote AND(a, b) = ab. Let us
assume that a and b have been respectively split into d+ 1 shares (ai)06i6d and (bi)06i6d such
that

⊕
i ai = a and

⊕
i bi = b. To securely compute a (d + 1)-tuple (ci)06i6d s.t.

⊕
i ci = c,

Ishai et al. perform the following steps:

1. For every 0 6 i < j 6 d, pick up a random bit ri,j.
2. For every 0 6 i < j 6 d, compute rj,i = (ri,j ⊕ aibj)⊕ ajbi.
3. For every 0 6 i 6 d, compute ci = aibi ⊕

⊕
j 6=i ri,j.

3 Considering wires as intermediate variables, this is equivalent to the security property given in Section 2.3.



Remark 1. The use of brackets indicates the order in which the operations are performed,
which is mandatory for security of the scheme.

The completeness of the solution follows from:⊕
i
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In [18] it is shown that the AND computation above is secure against any attack of order
lower than or equal to d/2. In Section 4, we give a tighter security proof: we show that the
scheme is actually dth-order secure.

Practical issues. Although the ISW scheme is an important theoretical result, its practical
application suffers few issues. Firstly, it induces an important overhead in silicon area for
the masked circuit. Indeed, every single AND gate is encoded using (d + 1)2 AND gates
plus 2d(d+ 1) XOR gates, and it requires the generation of d(d+ 1)/2 random bits at every
clock cycle. As an illustration, masking the compact circuit for the AES S-box described in [5]
would multiply its size (in terms of number of gates) by 7 for d = 2, by 14 for d = 3 and by 22
for d = 4 (without taking the random bits generation into account). Secondly, masking at the
hardware level is sensitive to glitches, which induces first-order flaws although in theory every
internal wire carries values that are independent of the sensitive variables [20,21]. Preventing
glitches in masked circuits imply the addition of synchronizing elements (e.g. registers or
latches) which still significantly increases the circuit size (see for instance [32]).

Since software implementations of masking schemes do not suffer area overhead and are
not impacted by the presence of glitches at the hardware level, a straightforward approach
to deal with the practical issues discussed above could be to implement the ISW scheme in
software. Namely, we could represent each non-linear transformation S to protect by a tuple of
Boolean functions (fi)i usually called coordinate functions of S, and evaluate the fi’s with the
ISW scheme by processing the AND and XOR operations with CPU instructions. However,
this approach is not practical since the timing overhead would clearly be prohibitive. The
present paper follows a different approach: we generalize the ISW scheme to secure any finite
field multiplication rather than a simple multiplication over F2 (i.e. a logical AND). We apply
this idea to design a secure higher-order masking scheme for the AES and we show that its
software implementation induces a reasonable overhead.

3 Higher-Order Masking of AES

The AES block cipher iterates a round transformation composed of a key addition, a linear
layer and a nonlinear layer which applies the same substitution-box (S-box) to every byte
of the internal state. As previously explained, the main difficulty while designing a masking
scheme for such a cipher is the masking of the nonlinear transformation, which in that case
lies in the masking of the S-box. Our method for masking the AES S-box is presented in the
next section, afterward the masking of the whole cipher is described.

In what follows, we shall consider that a random generator is available which on an
invocation rand(n) returns n unbiased random bits.



3.1 Higher-Order Masking of the AES S-box

The AES S-box S is defined as the right-composition of an affine transformation Af over F8
2

with the power function x 7→ x254 over the field F28 ≡ F2[x]/(x8 + x4 + x3 + x+ 1). Since the
affine transformation is straightforward to mask, our scheme mainly consists in a method for
masking the power function at any order d. Our solution consists in a secure computation of
the exponentiation to the power 254 over F28 . Such an approach has already been described
by Blömer et al. for d = 1 [3]. The core idea is to apply an exponentiation algorithm (e.g.
the square-and-multiply algorithm) on the first-order masked input while ensuring the mask
correction step by step. Compared to Blömer et al. ’s solution, our exponentiation algorithm
is able to operate on dth-order masked inputs and it achieves dth-order SCA security for any
value of d. To perform such a secure exponentiation, we define hereafter some methods to
securely compute a squaring and a multiplication over F28 at the dth order.

Masking the field squaring. Since we operate on a field of characteristic 2, the squaring
is a linear operation and we have x20⊕x21⊕ · · ·⊕x2d = x2. Securely computing a squaring can
hence be carried out by squaring every share separately. More generally, for every natural
integer j, raising x to the power 2j can be done securely by raising each xi to the 2j separately.

Masking the field multiplication. For the usual field multiplication we use the ISW
scheme recalled in Section 2.4. Even if it has been described to securely compute a logical
AND (that is a multiplication over F2), it can actually be transposed to secure a multiplication
over any field of characteristic 2: variables over F2 are replaced by variables over F2n , binary
multiplications (i.e. ANDs) are replaced by multiplications over F2n and binary additions
(i.e. XORs) are replaced by addition over F2n (that are n-bit XORs). This keep unchanged
the completeness of the scheme recalled in Section 2.4. The whole secure multiplication over
F2n is depicted in the following algorithm.

Algorithm 1 SecMult - dth-order secure multiplication over F2n

Input: shares ai satisfying
⊕

i ai = a, shares bi satisfying
⊕

i bi = b
Output: shares ci satisfying

⊕
i ci = ab

1. for i = 0 to d do

2. for j = i + 1 to d do

3. ri,j ← rand(n)

4. rj,i ← (ri,j ⊕ aibj)⊕ ajbi

5. for i = 0 to d do

6. ci ← aibi

7. for j = 0 to d, j 6= i do ci ← ci ⊕ ri,j

Masking the power function. Now we have a secure squaring and a secure multiplication
over F28 it remains to specify an exponentiation algorithm. It is clear from Algorithm 1 that
the running time of a secure multiplication is huge compared to that of a secure squaring.
A secure squaring indeed requires d + 1 squarings while a secure multiplication requires
(d+ 1)2 field multiplications, 2d(d+ 1) XORs and the generation of d(d+ 1)/2 random 8-bit
values. Our goal is therefore to design an exponentiation algorithm using the least possible
multiplications which are not squares. It can be checked that an exponentiation to the power



254 requires at least 4 such multiplications. The exponentiation algorithm presented hereafter
achieves this lower bound and requires few additional squares. It involves three intermediate
variables denoted y, z and w (note that x and y may be associated to the same memory
address).

Algorithm 2 Exponentiation to the 254
Input: x
Output: y = x254

1. z ← x2 [z = x2]

2. y ← zx [y = x2x = x3]

3. w ← y4 [w = (x3)4 = x12]

4. y ← yw [y = x3x12 = x15]

5. y ← y16 [y = (x15)16 = x240]

6. y ← yw [y = x240x12 = x252]

7. y ← yz [y = x252x2 = x254]

As we will argue in Section 4, , for the dth-order security to hold, it is important that the
masks (ai)i>1 and (bi)i>1 in input of the SecMult algorithm are mutually independent. That is
why we shall refresh the masks at some points during the secure exponentiation by calling a
procedure RefreshMasks4. The whole exponentiation to the power 254 over F28 secure against
dth-order SCA is depicted in the following algorithm.

Algorithm 3 SecExp254 - dth-order secure exponentiation to the 254 over F28

Input: shares xi satisfying
⊕

i xi = x
Output: shares yi satisfying

⊕
i yi = x254

1. for i = 0 to d do zi ← x2
i [

⊕
i zi = x2]

2. RefreshMasks(z0, z1, . . . , zd)

3. (y0, y1, . . . , yd)← SecMult
(
(z0, z1, . . . , zd), (x0, x1, . . . , xd)

)
[
⊕

i yi = x3]

4. for i = 0 to d do wi ← y4
i [

⊕
i wi = x12]

5. RefreshMasks(w0, w1, . . . , wd)

6. (y0, y1, . . . , yd)← SecMult
(
(y0, y1, . . . , yd), (w0, w1, . . . , wd)

)
[
⊕

i yi = x15]

7. for i = 0 to d do yi ← y16
i [

⊕
i yi = x240]

8. (y0, y1, . . . , yd)← SecMult
(
(y0, y1, . . . , yd), (w0, w1, . . . , wd)

)
[
⊕

i yi = x252]

9. (y0, y1, . . . , yd)← SecMult
(
(y0, y1, . . . , yd), (z0, z1, . . . , zd)

)
[
⊕

i yi = x254]

For completeness, we describe the RefreshMasks algorithm hereafter.

Algorithm 4 RefreshMasks
Input: shares xi satisfying

⊕
i xi = x

Output: shares xi satisfying
⊕

i xi = x

1. for i = 1 to d do

2. tmp← rand(8)

3. x0 ← x0 ⊕ tmp

4. xi ← xi ⊕ tmp

Algorithm 3 involves of 8d(d+ 1) + 4d XORs, 4(d+ 1)2 multiplications (over F28), d+ 1
squares, d+ 1 raising to the 4 and d+ 1 raising to the 16. It uses 3(d+ 1) + d(d+ 1)/2 bytes

4 Note that the masks resulting from the SecMult algorithm are independent of the input masks.



Table 1. Complexity of SecExp254.

order nb. XORs nb. mult. nb. ˆ2j nb. rand. bytes memory (bytes)

1 20 16 6 6 7
2 56 36 9 16 12
3 108 64 12 20 18
4 176 100 15 48 25
5 260 144 18 70 33
d 8d2 + 12d 4d2 + 8d + 4 3d + 3 2d2 + 4d 1

2
d2 + 7

2
d + 3

of memory5 and it requires the generation of 2d(d + 1) + 2d random bytes (see illustrative
values in Table 1). In comparison, the 2nd-order countermeasures previously published [34,38]
require at least 512 look-ups and 512 XORs and have a memory consumption of at least 256
bytes (see [33, 35] for a detailed comparison).

Masking the full S-box. The affine transformation is straightforward to mask. After re-
calling that the additive part of Af equals 0x63, it can be checked that we have:

Af(x0)⊕ Af(x1)⊕ · · · ⊕ Af(xd) =

{
Af(x) if d is even,
Af(x)⊕ 0x63 if d is odd.

Masking the affine transformation hence simply consists in applying it to every input share
separately and, in case of an even d, in adding 0x63 to one of the share afterward. The full
S-box computation secure against dth-order SCA is summarized in the following algorithm.

Algorithm 5 SecSbox
Input: shares xi satisfying

⊕
i xi = x

Output: shares yi satisfying
⊕

i yi = S(x)

1. (y0, . . . , yd)← SecExp254(x0, . . . , xd)

2. for i = 0 to d do yi ← Af(yi)

3. if (d mod 2 = 1) then y0 ← y0 ⊕ 0x63

Implementation aspects. Multiplications over F28 are typically implemented in software
using log/alog tables (see for instance [11]). Note that for security reasons, such an imple-
mentation must avoid conditional branches in order to ensure a constant operation flow. The
squaring and raisings to the 4 and 16 may be looked-up. Different time-memory tradeoffs are
possible. If not much ROM is available, the squaring can be implemented using logical shifts
and XORs (see for instance [11]), and the raising to the 2j, j ∈ {2, 4}, can then be simply
processed by j sequential squarings. Otherwise, depending on the amount of ROM avail-
able, one can either use one, two or three look-up table(s) to implement the raisings to 2j,
j ∈ {1, 2, 4}.

Remark 2. For the implementations presented in Section 5, we chose to implement the squar-
ing by a look-up table, getting the raising to the 4 (resp. 16) by accessing this table sequen-
tially 2 (resp. 4) times.

5 3(d + 1) bytes for the shares yi’s, zi’s and wi’s (Algorithm 3), and d(d + 1)/2 for the intermediate variables ri,j ’s
(Algorithm 1).



Our scheme may also be implemented in hardware. The sensitive part is the implementa-
tion of the SecMult algorithm (see Algorithm 1) which may be subject to glitches and which
should incorporate synchronizing elements. In particular, the evaluation of the ci shares
should not start before the evaluation of all the ri,j’s has been fully completed. Another ap-
proach would be to enhance the software implementation of the scheme with special purpose
hardware instructions. For instance, the multiplication, squaring and raisings to powers 4
and 16 over F28 could be added to the instructions set of the processor.

3.2 Higher-Order Masking of the Whole Cipher

In the previous section, we have shown how the AES S-box can be masked at any chosen
order d. We now detail the dth-order masking scheme for the whole AES block cipher.

The AES block cipher [11] operates on a 4× 4 array of bytes called the state and denoted
s = (sl,j)16l,j64. The state is initialized by the plaintext value and holds the ciphertext value
at the end of the encryption. Each round of AES is composed of four stages: AddRoundKey,
SubBytes, ShiftRows, and MixColumns (except the last round that omits the MixColumns).
AES is composed of either 10, 12 or 14 rounds, depending on the key length (the longer
the key, the higher the number of rounds) plus a final AddRoundKey stage. The round keys
involved in the different rounds are derived from the secret key through a key expansion
process.

In what follows, we describe how to mask an AES computation at the dth order. We will
assume that the secret key has been previously masked and that its d+1 shares are provided
as input to the algorithm (otherwise a straightforward first-order attack would be possible).
At the beginning of the computation, the state (holding the plaintext) is split into d + 1
states s0, s1, . . . , sd satisfying:

s = s0 ⊕ s1 ⊕ · · · ⊕ sd .

This is done by generating d random states si ← rand(16 × 8) and by computing s0 ←
s⊕
⊕

i>1 si. At the end of the AES computation, the state (holding the ciphertext) is recovered
by s←

⊕
i si.

In the next sections, we describe how to perform the different AES transformations on
the state shares in order to guarantee the completeness as well as the dth-order security.

Masking AddRoundKey. The AddRoundKey stage at round r consists in adding (by XOR)
the rth round key kr to the state. The masked key expansion (see description hereafter)
provides d + 1 shares (kri )i for every round key kr. To securely process the addition of kr,
one simply adds each of its share to one share of the state and the completeness holds from:

s⊕ kr = (s0 ⊕ kr0)⊕ (s1 ⊕ kr1)⊕ · · · ⊕ (sd ⊕ krd) .

Masking SubBytes. The SubBytes transformation consists in applying the AES S-box S to
each byte of the state:

SubBytes(s) = (S(sl,j))16l,j64 .

In order to mask this transformation, we apply the secure S-box computation described
in Section 3.1 to the (d + 1)-tuple of byte shares ((s0)l,j, (s1)l,j, . . . , (sd)l,j) for every row-
coordinate l ∈ [1, 4] and for every column-coordinate j ∈ [1, 4].



Masking ShiftRows and MixColumns. The ShiftRows and MixColumns transformations
compose the linear layer of AES. In the ShiftRows transformation, the bytes in the last three
rows of the state are cyclically shifted over different numbers of bytes (1 for the second row, 2
for the third row and 3 for the fourth row). The MixColumns transformation operates on the
state column-by-column. Each column is treated as a four-term polynomial over F2[x]/(x8 +
x4+x3+x+1) and is multiplied modulo x4+1 with a fixed polynomial a(x) = 3x3+x2+x+2.
Since they are both linear with respect to the XOR operation, masking these transformations
is straightforward. One just apply them to every state share separately and the completeness
holds from:

ShiftRows(s) =
d⊕
i=0

ShiftRows(si) ,

and:

MixColumns(s) =
d⊕
i=0

MixColumns(si).

Masking the key expansion. The AES key expansion generates a 4 × 4(Nr + 1) ar-
ray of bytes w, called the key schedule, where Nr is the number of rounds (which de-
pends on the key-length). Let w∗,j denotes the jth column of w. Each group of 4 columns
(w∗,4r−3,w∗,4r−2,w∗,4r−1,w∗,4r) forms a round key kr that is XORed to the state during the
rth AddRoundKey stage. The first Nk columns of the key schedule are filled with the key bytes
(where the key byte-length is 4Nk) and the next ones are derived according to the process
described hereafter.

Let SubWord be the transformation that takes a four-byte input column and applies the
AES S-box to each byte. Let RotWord be the transformation that takes a 4-byte column as
input and performs a cyclic shift of one byte from bottom to top. Finally, let Rconj denotes
the constant 4-bytes column ({02}j−1, 0, 0, 0)T , where {02}j−1 is the (j − 1)th power of x in
the field F2[x]/(x8 + x4 + x3 + x+ 1). The jth column of the key schedule w∗,j is defined as:

w∗,j = w∗,j−Nk ⊕ t

with:

t =


RotWord(SubWord(w∗,j−1))⊕ Rconj/Nk if (j mod Nk = 0),
SubWord(w∗,j−1) if (Nk = 8) and (j mod Nk = 4),
w∗,j−1 otherwise.

In order to securely process the key expansion at the dth-order, the key schedule w is
split into d+ 1 schedules w0, w1, . . . , wd. The first columns of each schedule shares are filled
with the key shares at the beginning of the ciphering. Each time a new schedule column w∗,j
must be computed, its d+ 1 shares (w0)∗,j, (w1)∗,j, . . . , (wd)∗,j are computed as:

(wi)∗,j = (wi)∗,j−Nk ⊕ ti

where the ti’s denote the 4-bytes shares of t that are securely computed from the 4-bytes
shares of w∗,j−1. Such a secure computation can be easily deduced from the methods described
above. The SubWord transformation is processed by applying the secure S-box computation
described in Section 3.1 to the byte shares (w0)l,j, (w1)l,j, . . . , (wd)l,j for each row-coordinate



l ∈ [1, 4]. Since RotWord is linear with respect to the XOR, it is applied (when involved) to
every share separately. Finally, when Rconj/Nk must be added to t, it is added to one of its
share (e.g. t0).

The whole dth-order secure key expansion process is summarized in the following algo-
rithm.

Algorithm 6 dth-order secure AES key expansion
Input: key shares ki satisfying

⊕
i ki = k

Output: shares wi satisfying
⊕

i wi = w

1. for j = 1 to Nk do

2. for i = 0 to d do (wi)∗,j ← (ki)∗,j
3. for j = Nk + 1 to 4(Nr + 1) do

4. for i = 0 to d do ti ← (wi)∗,j−1

5. if
(
(j mod Nk = 0) or (Nk = 8) and (j mod Nk = 4)

)
then

6. for l = 1 to 4 do
(
(t0)l, (t1)l, . . . , (td)l

)
← SecSbox

(
(t0)l, (t1)l, . . . , (td)l

)
7. if (j mod Nk = 0) then

8. for i = 0 to d do ti ← RotWord(ti)

9. t0 ← t0 ⊕ Rconj/Nk

10. for i = 0 to d do (wi)∗,j−1 ← (wi)∗,j−Nk ⊕ ti

Remark 3. Note that the key expansion can be executed on-the-fly during the AES compu-
tation in order to avoid the storage of all the round keys.

Masking the whole AES: algorithmic description. Algorithm 7 summarizes the whole
AES computation secure against dth-order SCA.

Algorithm 7 dth-order secure AES computation
Input: plaintext p, key shares ki satisfying

⊕
i ki = k

Output: ciphertext c

1. s0 ← p

*** State masking ***

2. for i = 0 to d do

3. si ← rand(16× 8)

4. s0 ← s0 ⊕ si

*** All but last rounds ***

5. for r = 1 to Nr− 1 do

6. for i = 0 to d do si ← si ⊕ kr
i

7. for l = 1 to 4, j = 1 to 4 do

8.
(
(s0)l,j , (s1)l,j , . . . , (sd)l,j

)
← SecSbox

(
(s0)l,j , (s1)l,j , . . . , (sd)l,j

)
9. for i = 0 to d do si ← MixColumns

(
ShiftRows(si)

)
*** Last round ***

10. for i = 0 to d do si ← si ⊕ kNr
i

11. for l = 1 to 4, j = 1 to 4 do

12.
(
(s0)l,j , (s1)l,j , . . . , (sd)l,j

)
← SecSbox

(
(s0)l,j , (s1)l,j , . . . , (sd)l,j

)
13. for i = 0 to d do si ← ShiftRows(si)

14. for i = 0 to d do si ← si ⊕ kNr+1
i



*** State unmasking ***

15. c← s0

16. for i = 1 to d do c← c⊕ si

4 Security Analysis

In this section, we give a formal security proof for our scheme. After describing the security
model, we pay particular attention to the secure field multiplication algorithm SecMult (i.e.
the generalized ISW scheme) which is the sensitive part of our scheme. We improve the
security proof given in [18] for the ISW scheme and we show that it achieves dth-order
security rather than (d/2)th-order security. Afterward, we prove the security of the whole
AES computation (Algorithm 7).

4.1 Security Model

We consider a randomized encryption algorithm E taking a plaintext p and a (randomly
shared) secret key k as inputs6 and performing a deterministic encryption of p under the
secret key k while randomizing its internal computations by means of an external random
number generator (RNG). The RNG outputs are assumed to be perfectly random (uniformly
distributed, mutually independent and independent of the plaintext and of the secret key).
Any variable that can be expressed as a deterministic function of the plaintext and the
secret key, which is not constant with respect to the secret key, is called a sensitive variable
with the exception of the ciphertext Ek(p) or any deterministic function of it. Note that
every intermediate variable computed during an execution of E (except the plaintext and the
ciphertext) can be expressed as a deterministic function of a sensitive variable and of the
RNG outputs.

We shall consider the plaintext, the secret key and the intermediate variables of E as
random variables. The distributions of the intermediate variables are induced by the algo-
rithm inputs (p and k) distributions and by the uniformity of the RNG outputs. The joint
distribution of all the intermediate variables of E thus depends on (p, k). On the other hand,
some subsets of intermediate variables may be jointly independent of (p, k). This leads us to
the following formal definition of dth-order SCA security.

Definition 1. A randomized encryption algorithm is said to achieve dth-order SCA security
if every d-tuple of its intermediate variables is independent of any sensitive variable.

Equivalently, an encryption algorithm achieves dth-order SCA security if any d-tuple of
its intermediate variables, except the plaintext and the ciphertext (or any function of one of
them), is independent of the algorithm inputs (p, k).

Before proving the security of our scheme, we need to introduce a few additional notions.
A (d + 1)-family of shares is a family of d + 1 intermediate variables (xi)06i6d such that
every d-tuple of xi’s is uniformly distributed and independent of any sensitive variable and⊕

06i6d xi is a sensitive variable. Two (d+ 1)-families of shares (xi)i and (yi)i are said to be

6 The secret key k is assumed to be split into d + 1 shares k0, k1, . . . , kd such that
⊕

i ki = k and every d-tuple of
ki’s is uniformly distributed and independent of k.



d-independent one of each other if every (2d)-tuple composed of d elements from (xi)i and
of d elements from (yi)i is uniformly distributed and independent of any sensitive variable.
Two (d + 1)-families of shares are said to be d-dependent one on each other if they are
not d-independent. A randomized encryption algorithm aiming at dth-order SCA security
typically operates on (d + 1)-families of shares. Such an algorithm can hence be split into
several randomized elementary transformations defined as algorithms taking one or two d-
independent (d+ 1)-families of shares as input and returning a (d+ 1)-family of shares.

To prove the dth-order SCA security of our scheme, we will first show that it can be split
into several randomized elementary transformations each achieving dth-order SCA security.
Afterward, the security of the whole algorithm will be demonstrated.

As in [18], our proofs shall apply similar techniques as zero-knowledge proofs [16]. We
shall show that the distribution of every d-tuple of intermediate variables (v1, v2, . . . , vd) of
our randomized AES algorithm can be perfectly simulated without knowing p and k. Namely,
we show that it is possible to construct a d-tuple of random variables which is identically
distributed as (v1, v2, . . . , vd), independently of any statement about p and k. In some cases,
the simulated distribution shall involve some intermediate variables (wi)i (different from the
vi’s). We shall then say that (v1, v2, . . . , vd) can be perfectly simulated from the wi’s. It follows
that if (v1, v2, . . . , vd) can be perfectly simulated from some intermediate variables wi’s which
are jointly independent of p and k, then (v1, v2, . . . , vd) is also independent of p and k. We
are now able to introduce the first lemma of our security proof.

Lemma 1. A randomized elementary transformation T achieves dth-order SCA security if
and only if the distribution of every d-tuple of its intermediate variables can be perfectly
simulated from at most d shares of each of its input (d+ 1)-families.

Proof. Let us assume that every d-tuple v = (v1, v2, . . . , vd) of intermediate variables of T
can be perfectly simulated from at most d shares of each of its input (d + 1)-families of
shares. By definition of a (d+ 1)-family of shares, this amounts to assume that every such v
can be simulated from (at most) 2d uniform random variables that are independent of any
sensitive variable. It follows that every d-tuple of intermediate variables v is independent of
any sensitive variable, which implies that T is dth-order SCA secure. Let us now assume
that there exits a d-tuple v of intermediate variables which requires all the d + 1 shares of
one of its input (d + 1)-families – let say (xi)i – to be perfectly simulated. Then, denoting⊕

i xi = x where x is a sensitive variable, we get that v depends on x (otherwise d shares xi
would suffice to the simulation) which contradicts the dth-order SCA security of T . �

Lemma 1 shows that proving the security of a randomized elementary transformation T
can be done by exhibiting a method for perfectly simulating the distribution of any d-tuple
of intermediate variables of T from the values of at most d shares of each input (d+1)-family
of T . We follow this approach in the next section to prove the security of the secure field
multiplication algorithm SecMult (Algorithm 1).

4.2 Improved Security Proof for the ISW Scheme

The theorem hereafter states that the generalized ISW scheme (Algorithm 1) achieves dth-
order SCA security.



Theorem 1. Let (ai)06i6d and (bi)06i6d be two d-independent (d + 1)-families of shares in
input of Algorithm 1. Then, the distribution of every tuple of d or less intermediate variables
in Algorithm 1 is independent of the distribution of values taken by a =

⊕
06i6d ai and

b =
⊕

06i6d bi.

The proof given hereafter follows the outlines of that given by Ishai et al. in their paper but
it is tighter: we prove that the scheme achieves dth-order SCA security rather than (d/2)th-
order SCA security as proved in [18]. The core idea of our improvement is to simulate the
distribution of any d-tuple of intermediate variables of Algorithm 1 from d shares in (ai)i and
d shares in (bi)i instead of simulating any (d/2)-tuple of intermediate variables from d pairs
of shares in (ai, bi)i.

Proof. Our proof consists in constructing two sets I and J of indices in [0; d] with cardinalities
lower than or equal to d and such that the distribution of any d-tuple (v1, v2, . . . , vd) of
intermediate variables of Algorithm 1 can be perfectly simulated from a|I := (ai)i∈I and
b|J = (bj)j∈J . This will prove the theorem statement since, by definition, a|I and b|J are
jointly independent of (a, b) as long as the cardinalities of I and J are strictly smaller than
d. We describe the constructions of I and J hereafter.

1. Initially, I and J are empty and all the vh’s are unassigned.
2. For every intermediate variable vh of the form ai, bi, aibi, ri,j (for any i 6= j) or a sum of

values of the above form (including ci as a special case) add i to I and J . This covers all
the intermediate variables of Algorithm 1 except those appearing in the computation of
rj,i (Step 4) which are of the form aibj or ri,j ⊕ aibj. For those intermediate variables add
i to I and j to J .

3. Now that the sets I and J have been determined – and note that since there are at most
d intermediate variables vh, the cardinalities of I and J can be at most d – we show how
to complete a perfect simulation of the d-tuple (v0, v1, . . . , vd) using only the values of
a|I and b|J . First, we assign values to every ri,j entering in the computation of any vh as
follows:
– If i /∈ I (regardless of j), then ri,j does not enter into the computation for any vh.

Thus, its value can be left unassigned.
– If i ∈ I, but j /∈ I, then ri,j is assigned a random independent value. Indeed, if i < j

this is what would have happened in Algorithm 1. If i > j, however, we are making
use of the fact that rj,i will never be used in the computation of any vh (otherwise we
would have j ∈ I by construction). Hence we can treat ri,j as a uniformly random and
independent value.

– If {i, j} ⊆ I and {i, j} ⊆ J , then we have access to ai, aj, bi and bj and we thus compute
ri,j and rj,i exactly as they would have been computed in Algorithm 1; i.e., one of them
(say ri,j) is assigned a random value and the other rj,i is assigned ri,j ⊕ aibj ⊕ ajbi.

– If {i, j} ⊆ I and {i, j} * J , then at least ri,j or rj,i (or both) does not enter into
the computation for any vh (otherwise we would have {i, j} ⊆ J by construction).
Following the same reasoning as previously (case i ∈ I, j /∈ I), we can then assign a
random independent value to the one (if any) that enters in the computation of the
vh’s.

4. For every intermediate variable vh of the form ai, bi, aibi, ri,j (for any i 6= j), or a sum of
values of the above form (including ci as a special case), we know that i ∈ I and i ∈ J ,



and all the needed values of ri,j have already been assigned in a perfect simulation. Thus,
vh can be computed in a perfect simulation.

5. The only types of intermediate variables remaining are vh = aibj or vh = ri,j ⊕ aibj. By
construction, we have i ∈ I and j ∈ J which allows us to compute aibj, and since all the
ri,j (entering into the computation of the vh’s) has been assigned, the value of vh can be
simulated perfectly.

�

4.3 Security Proof of Our Scheme

The following theorem states the security of our whole randomized AES (Algorithm 7).

Theorem 2. The randomized AES computation depicted in Algorithm 7 achieves dth-order
SCA security.

In order to demonstrate the theorem statement, we will use the following lemma.

Lemma 2. Let T be a randomized elementary transformation. If T achieves dth-order SCA
security then the distribution of every intermediate variable of T can be perfectly simulated
from at most one share of every input (d+ 1)-families of T .

Proof. Suppose that the simulation of the distribution of an intermediate variable v from T
requires at least two shares xi1 and xi2 from the same family (xi)i. The d-tuple composed
of v and of the d− 2 shares (xi)i 6=i1,i2 requires the whole (d + 1)-family of shares (xi)i to be
perfectly simulated which by Lemma 1 is in contradiction with the dth-order security of T .
�

Proof (Theorem 2). An execution of our randomized AES algorithm can be expressed as a
sequence of executions of the following randomized elementary transformations7:

– the secure key addition (Steps 6, 10 and 14 of Algorithm 7),

– the secure affine transformation (Steps 1 and 2 of Algorithm 5),

– the secure square (Step 1 of Algorithm 3), the secure raising to the 4 (Step 4 of Algorithm
3) and the secure raising to the 16 (Step 7 of Algorithm 3),

– the RefreshMasks procedure (Algorithm 4),

– the SecMult algorithm (Algorithm 1),

– the secure ShiftRows and the secure MixColumns transformations (Steps 9 and 13 of Al-
gorithm 7).

7 For simplicity we omit the randomized elementary transformations used in the secure key expansion (Algorithm
6). Note that they could be listed without affecting the rest of the proof.



All these transformations take as input either a single (d + 1)-family of shares (all trans-
formations but the secure key addition and SecMult) or two d-independent (d + 1)-families
of shares (secure key addition and SecMult). Moreover they all achieve dth-order SCA secu-
rity (it has been proven for SecMult in the previous section and it is straightforward for the
remaining randomized elementary transformations since they operate on each input share
independently). Let us consider a d-tuple (v1, v2, . . . , vd) of intermediate variables each from
a randomized elementary transformation Ti. By Lemma 2, the distribution of every vi can be
perfectly simulated given the value of at most one share of every (d+ 1)-families in input of
Ti. Since by definition the (d+ 1)-families in input of the same Ti are independent, the set of
shares which are necessary to simulate (v1, v2, . . . , vd) does not contain more than d shares
from the same (d + 1)-family or from d-dependent (d + 1)-families. It follows that the dis-
tribution of (v1, v2, . . . , vd) can be perfectly simulated from uniform random values that are
jointly independent of any sensitive variable. In other words, (v1, v2, . . . , vd) is independent
of any sensitive variable. �

5 Implementation Results

To compare the efficiency of our proposal with that of other methods proposed in the litera-
ture, we applied them to protect an implementation of the AES-128 algorithm in encryption
mode. We have implemented our new countermeasure for d ∈ {1, 2, 3}, namely to coun-
teract either first-order SCA (d = 1) or second-order SCA (d = 2) or third-order SCA
(d = 3). Among the numerous methods proposed in the literature to thwart first-order SCA
we chose to implement only that having the best timing performance (the table re-computation
method [23]) and that offering the best memory performance (the tower field method [28]).
In the second-order case, we implemented the only two existing methods: the one proposed
in [38]8 and the one proposed [34]. Eventually, since no countermeasure against 3rd-order
SCA was existing before that introduced in this paper, it is the single one in its category.

We wrote the codes in assembly language for an 8051-based 8-bit architecture. The imple-
mentations only differ in their approaches to protect the S-box computations. The linear steps
of the AES have been implemented in the same way, by following the outlines of the method
presented in Sect. 3.2 (and also used in [38] and [34]). In Table 2, we list the timing/memory
performances of the different implementations.

As expected, in the first-order case the countermeasures introduced in [23] and [28,29] are
much more efficient than ours. This is a consequence of the generic character of our method
which is not optimized for one choice of d but aims to work for any d. For instance, the
representation of the AES S-box used in [28, 29] involves less field multiplications than our
representation. Moreover, those field multiplications can be defined in the subfield F16 of F256,
where the field operations can be entirely looked-up thanks to a table of 256 bytes in code
memory.

In the second-order case, our proposal becomes much more efficient than the existing
solutions. It is 2.2 times faster than the countermeasure proposed in [38] with a RAM memory
requirement divided by around 10. It is also 2.5 times faster than the countermeasure in [34]
and requires 5.3 times less RAM. Memory allocation differences are merely due to the fact

8 Initially, the method of [38] was devoted to thwart dth-order SCA for any chosen order d but it has been shown
insecure for d > 3 [8].



Table 2. Comparison of secure AES implementations

Method Reference cycles RAM (bytes) ROM (bytes)

Unprotected Implementation

No Masking Na. 3× 103 32 1150

First Order Masking

Re-computation [23] 10× 103 256 + 35 1553

Tower Field in F4 [28, 29] 77× 103 42 3195

Our scheme for d = 1 This paper 129× 103 73 3153

Second Order Masking

Double Re-computations [38] 594× 103 512 + 90 2336

Single Re-computation [34] 672× 103 256 + 86 2215

Our scheme for d = 2 This paper 271× 103 79 3845

Third Order Masking

Our scheme for d = 3 This paper 470× 103 103 4648

that the methods [38] and [34] generalize the table re-computation method and thus require
the storage of one (for [34]) or two (for [38]) randomized representation(s) of the AES S-
box. The differences in timing performances come from the fact that the methods in [38]
and [35] process one loop over all the 256 elements of the S-box look-up table (each loop
iteration processing itself a few elementary operations), which is more costly than the 36
field multiplications and 56 bitwise additions involved in our method (see Table 1).

Remark 4. In [34], an improvement of the method implemented for Table 2 is proposed that
enables to decrease the number of iterations required for the secure S-box computation when
implemented on a 16-bit or 32-bit architecture. In such a context (d = 2, 16-bit or 32-bit
architecture), the method would still requires much more RAM allocation than ours but it
could be slightly more efficient in timing.

Eventually, in the third-order case our method has acceptable timing/memory perfor-
mances. For comparison, it stays faster than the second-order countermeasures proposed
in [38] and [34] and it still requires much less RAM memory. For chips running at 5MHz and
31MHz, an AES encryption of one block requiring 470 × 103 cycles, takes 94ms and 15ms
respectively. For some use cases where the size of the message to encrypt/decrypt is not
too long such a timing performance is acceptable (e.g. challenge-response protocols, Message
Authentication Codes for one-block messages as in banking transactions).

6 Conclusion

In this paper, we have presented the first masking scheme dedicated to AES which is provably
secure at any chosen order and which can be implemented in software at the cost of a
reasonable overhead. We gave a formal security proof of our scheme including an improved
security proof for the scheme published by Ishai et al. at Crypto 2003. We also provided
implementation results showing the practical interest of our scheme as well as its efficiency
compared to the existing second-order masking schemes.
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