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Abstract. At CHES 2006, a DPA countermeasure based on the Fourier
Transform was published. This generic countermeasure aims at protecting
from DPA any S-box calculation used in symmetric cryptosystems implemen-
tations. In this paper, we show that this countermeasure has a flaw and that
it can be broken by first order DPA. Moreover, we have successfully put into
practice our attack on two different S-box implementations. Finally, we pro-
pose an improvement of the original countermeasure and we prove its security
against first order DPA.

1 Introduction

The processing of a cryptographic algorithm on a physical device may leak
information about the manipulated data. To exploit this information, Side
Channel Attacks (SCA) were introduced in 1996, cf. [8]. It is today composed
of a large variety of attacks that differ in the attack model, the nature of the
side channels they target or the leakage treatments they perform. The Dif-
ferential Power Analysis (DPA) introduced in [9] is probably the one which
has received the most attention in the literature. This attack has indeed been
demonstrated to be very powerful against unprotected cryptographic imple-
mentations, where it allows the attacker to recover the value of a secret key
with only a few leakage measurements. Roughly speaking, a DPA is a sta-
tistical attack that correlates a physical leakage with the values of particular
intermediate variables (called sensitive variables in this paper) that depend
on both a public value and the secret key. To avoid information leakage and
its exploitation by DPA, the manipulation of sensitive variables must be pro-
tected by adding countermeasures to the algorithm.

A very common countermeasure to protect block cipher implementations
from DPA is to mask every sensitive variable with a randomly generated vari-
able (called mask) and then to perform the calculations by only manipulating
the masked variable and/or the mask. When such a technique is applied, a



problem occurs which is usually referred in the literature as the mask correc-
tion Problem. It relies on the difficulty of masking the calculation of non-linear
sub-functions (e.g. the so-called S-boxes), without ever manipulating an in-
termediate variable that depends on sensitive data. Many papers have been
published that aim at providing a solution to this problem (see for instance
[1, 7, 10–12]). At CHES 2006, Prouff, Giraud and Aumônier proposed in [11] a
solution that may be of particular interest when the input/output dimensions
of the function to protect are small and when the masks values are regener-
ated many times during the algorithm processing. Moreover, the solution is
provided together with a proof of security that allows the reader to formally
validate its security. In this paper, we show that contrary to what is claimed
in [11], a DPA attack can be successfully mounted against this countermea-
sure. We exhibit the flaw upon which our attack is based and we present how
to successfully exploit it to recover the value of a secret parameter. Finally,
we propose an improvement of the countermeasure proposed in [11] and we
prove its security versus DPA in a realistic model.

2 Preliminaries

In the rest of the paper, we say that a variable is sensitive with respect to
DPA (shortened to sensitive variable in the context of the present paper) if it
is a non-constant function of a plaintext and a secret key. A DPA (also called
first order DPA in the literature when it is compared to higher order DPA)
exploits the leakage about a single intermediate sensitive variable. Hereafter,
we recall the formal definition of the security against DPA (see for instance
[2, 4, 11]).

Definition 1. A cryptographic algorithm is said to be secure against DPA if
all its intermediate variables are independent of any sensitive variable.

Conversely, an algorithm is said to admit a first order flaw if one of its
intermediate variables depends on a sensitive variable.

A common countermeasure against DPA is to add (by bitwise or mod-
ular addition) a random value called the mask to each sensitive variable.
Masks and masked variables propagate throughout the cipher in such a way
that every intermediate variable is independent of any sensitive variable. This
strategy, called first order masking, ensures that the instantaneous leakage is
independent of any sensitive variable, thus rendering DPA ineffective.

As pointed out for instance in [6, 1], the tricky part when masking the
implementation of an algorithm is to deal with the following problem, called
mask correction Problem:
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Problem 1. Let F be a (n, m)-function (that is a function from Fn
2 into Fm

2 ).
From a masked input Z ⊕ R1 ∈ Fn

2 , the mask R1 ∈ Fn
2 and an output mask

R2 ∈ Fm
2 , compute F (Z)⊕R2 without introducing any first order flaw.

3 Secure S-box Calculation Based on the Fourier Transform

In [11], an algorithm claimed to solve Problem 1 is proposed. The method is
based on the involutivity property of the Fourier Transform. Before describing
it, let us first recall some basics about the transformation itself.

For every (n, m)-function F , the Fourier transform F̂ of F is defined for
every Z = (Z0, · · · , Zn−1) ∈ Fn

2 by:

F̂ (Z) =
∑
a∈Fn

2

F (a)(−1)a·Z , (1)

where · denotes the scalar product defined by a · Z =
⊕n−1

i=0 aiZi.
It is well known that this transformation is involutive, which means that̂̂

F = 2nF or equivalently that:

F (Z) =
1
2n

∑
a∈Fn

2

F̂ (a)(−1)a·Z , Z ∈ Fn
2 . (2)

Let R1, R2, R3 and R4 be 4 random masks belonging to Fn
2 , and let

Z denotes a sensitive variable. The algorithm proposed in [11] to process
F (Z) + R3 mod 2n securely from Z̃ = Z ⊕R1 and R1, implements the right-
hand side calculus of the following relation (which is a slightly modified version
of Relation (2)):

(−1)(Z̃⊕R2)·R1F (Z) + R3 mod 2n

=

 1
2n

R′ +
∑
a∈Fn

2

F̂ (a)(−1)a·Z̃⊕R1·(Z̃⊕a⊕R2) mod 22n

 , (3)

where R′ = 2nR3 + R4.
Let SSP denote the signed scalar product X, Y 7→ (−1)X·Y , let � denote

the addition modulo 22n and let × denote the multiplication of two values
belonging to {−1, 1}. We recall hereafter the algorithm proposed in [11] to
process the right-hand side of (3) securely.

Algorithm 1 Computation of an arithmetically masked S-box output from a boolean
masked input

Inputs: A masked input Z̃ = Z ⊕R1, the input mask R1 and a lookup table F̂
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Output: The 3-tuple ((−1)(Z̃⊕R2)·R1F (Z) + R3 mod 2n, R3, R2) where R2 and R3 are
random values.

1. Pick up three n-bit randoms R2, R3 and R4

2. result← 2nR3 + R4

3. for a from 0 to 2n − 1 do

4. T1 ← SSP(a, Z̃) [T1 = (−1)a·Z̃ ]

5. T2 ← Z̃ ⊕ a [T2 = Z̃ ⊕ a]

6. T2 ← T2 ⊕R2 [T2 = Z̃ ⊕ a⊕R2]

7. T2 ← SSP(R1, T2) [T2 = (−1)R1·(Z̃⊕a⊕R2)]

8. T2 ← T1 × T2 [T2 = (−1)a·Z̃⊕R1·(Z̃⊕a⊕R2)]

9. T2 ← T2 × F̂ (a) [T2 = F̂ (a)(−1)a·Z̃⊕R1·(Z̃⊕a⊕R2)]

10. result← result � T2 [result = (2nR3 + R4) �
∑

i∈{0,a}

F̂ (i)(−1)i·Z̃⊕R1·(Z̃⊕i⊕R2)]

11. end

12. result← result� n [result = (−1)(Z̃⊕R2)·R1F (Z) + R3 mod 2n]

13. return (result, R3, R2)

Finally, it is proposed in [11] to use the method described in [5] in order to
transform the arithmetic masking of the output of Algorithm 1 into a boolean
masking.

The authors of [11] had proposed a proof of security versus DPA for the
countermeasure defined by Algorithm 1, but as we will see in the next section,
the proof is flawed and the countermeasure is not secure against DPA.

4 DPA against the Fourier Transform Based S-box
Calculation

4.1 First Order Flaw

Unlike what is claimed in [11], the implementation of Algorithm 1 is not
immune against DPA. Indeed, the variable V = a · Z̃ ⊕ R1 · (Z̃ ⊕ a ⊕ R2)
processed at Step 8 brings information about the sensitive variable Z (recalling
Z̃ = Z⊕R1). To exhibit the dependency between V and Z, let us first rewrite
V as follows:

V = a · Z̃ ⊕R1 · (Z̃ ⊕ a⊕R2)
= a · (Z ⊕R1)⊕R1 · (Z̃ ⊕ a⊕R2)
= a · Z ⊕R1 · (Z̃ ⊕R2) .

The relation above shows that the intermediate variable V equals the sensitive
variable a ·Z (a being a loop index) masked with the scalar product R1 · (Z̃⊕
R2). Since R2 is uniformly distributed and is independent of both Z and R1,
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then so does the variable Z̃ ⊕ R2. The flaw of the method proposed in [11]
comes from the fact that the scalar product of two uniformly distributed
random variables does not output an uniformly distributed random variable.
For example, the product b1 · b2 of two random bits b1 and b2 equals 0 with
probability 3/4, and equals 1 with probability 1/4. More generally, for n-bit
random variables we have the following lemma.

Lemma 1. Let X and Y be two random variables uniformly distributed over
Fn

2 and mutually independent. Then the scalar product X · Y satisfies

Pr[X · Y = 0] =
1
2

+
1

2n+1
. (4)

Proof. We have:

P [X ·Y = 0] = P [X 6= 0]·P [X ·Y = 0|X 6= 0]+P [X = 0]·P [X ·Y = 0|X = 0] .

Since the Boolean function y ∈ Fn
2 7→ x · y is linear and not null for every

x 6= 0, we have #{x · y = 1} = #{x · y = 0} = 2n−1. This, together with the
fact that X and Y are independent, implies P [X · Y = 0|X 6= 0] = 1

2 . Since
P [X · Y = 0|X = 0] = 1 and P [X 6= 0] = 2n−1

2n , we deduce (4). �

Remark 1. In the security proof conducted in [11], it is stated that the uniform
distribution of X and Y implies the one of X · Y . We show in Lemma 1 that
this assertion is actually wrong.

Lemma 1 implies that the distribution of R1 · (Z̃ ⊕ R2) has a bias 1
2n+1

with respect to the uniform distribution. Since the sensitive variable a · Z is
masked with a biased mask, the variable V defined in (4) leaks information
on a · Z. This information can be used to recover Z by DPA.

4.2 DPA Attack

A DPA attack [9] targets the leakage L(b) generated by the processing of a
sensitive bit b in order to recover information about a secret which we denote
here by k?. It can be performed with only a few information about the leakage
and it actually only assumes that the expectation of L(b) depends on the value
of b. Let us first recall the outlines of the attack in the general case where b
can be expressed as:

b = f(X, k?) , (5)

where f is a Boolean function and X is a public variable.
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Description. To perform a DPA, the target algorithm is executed several
times, say N , for a sequence of values (xi)i≤N taken by X. For each execution,
the attacker measures the leakage li generated by the processing of b. Then,
the resulting leakage measurement sequence (li)i≤N is involved to (in)validate
a key hypothesis k on k?. For such a purpose, the attacker first computes
the sequence of guesses (bi)i≤N which are the predicted values of the bit b
processed in the successive executions: namely, for every i ≤ N we have
bi = f(xi, k). Then, the leakage measurements are separated in two categories:
the ones for which the predicted bit bi is equal to 1, and the ones for which
it is equal to 0. Finally, the so-called differential ∆k corresponding to the
difference between the mean values of the two sets is computed:

∆k =
∑N

i=1 bi × li∑N
i=1 bi

−
∑N

i=1(1− bi)× li∑N
i=1(1− bi)

. (6)

If the key hypothesis is correct then the expectation satisfies:

E[∆k? ] = E[L(1)]− E[L(0)] . (7)

If the key hypothesis is incorrect then a ratio α ∈ [0, 1] of the bi’s is wrongly
predicted and the expectation of the differential satisfies:

E[∆k] = (1− 2α)
(
E[L(1)]− E[L(0)]

)
. (8)

Since α is usually around 1
2 , we have E[∆k 6=k? ] ' 0. This implies that, for a

sufficiently large N , the correct key hypothesis is such that ∆k is of maximum
amplitude.

Remark 2. Depending on the function f , it may happen that the correct key
hypothesis is not the single one for which ∆k is of maximum amplitude. In-
deed, a key hypothesis such that α = 1 also results in a differential of maximal
amplitude. According to (6), this differential and the one corresponding to the
correct key hypothesis have exactly the same amplitude but have opposite
signs. To differentiate them the attacker needs to determine the polarity of
E[L(1)]− E[L(0)].

DPA Attack Exploiting a Biased Mask. Let us now consider the case
where the target bit b is masked, namely:

b = f(X, k?)⊕R , (9)

where R is a random bit.
If R is uniformly distributed over F2, then no successful DPA attack is

possible. Indeed, in that case b equals 0 (resp. 1) with probability 1
2 indepen-

dently of k?. Conversely, when the distribution of R is biased compared to the
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uniform distribution, then the distribution of b depends on f(X, k?), which
renders DPA possible. In the following, we denote by ε 6= 0 the bias such that
P [R = 0] = 1

2 + ε.
The DPA works in the same way as in the unmasked case. The sequence

of guesses is still defined as bi = f(xi, k) (since R is not predictable) and the
differential ∆k is computed according to (6). The randomization provided by
R implies that the bit effectively processed equals f(xi, k

?) with probability
1
2 + ε. One deduces that, for the correct key hypothesis, a portion 1

2 + ε of
the bi’s is correctly predicted while a portion 1

2 − ε is wrongly predicted in
average. This implies that the expectation of the differential for the correct
key hypothesis satisfies:

E[∆k? ] =
(

1
2

+ ε

)(
E[L(1)]− E[L(0)]

)
+
(

1
2
− ε

)(
E[L(0)]− E[L(1)]

)
,

that is:
E[∆k? ] = 2ε×

(
E[L(1)]− E[L(0)]

)
.

Hence the expectation of ∆k? is divided by a factor 1
2ε compared to an unpro-

tected implementation (this also holds for the differentials ∆k obtained for
wrong key hypotheses – see Appendix A – ). This implies, according to the
analysis in [3], that the number of required leakage measurements is roughly
multiplied by ( 1

2ε)
2. A more detailed analysis is conducted in Appendix A

where we give the exact distribution of ∆k, assuming that the leakage noise
has a Gaussian distribution.

As a result, Lemma 1 implies that a DPA on Algorithm 1 exploiting the
flaw exhibited in Section 4.1 is expected to require about 22n times more
leakage measurements than a DPA when no masking is used. Since Algorithm
1 is only interesting for a small value of n (e.g. n = 4), this factor is not
prohibitive.

4.3 DPA Attack on the Flaw

In this section, we apply the DPA attack described in Section 4.2 in order to
exploit the flaw exhibited in Section 4.1. More precisely, our attack targets
a bit b which is a scalar product a · Z masked with a biased mask R =
R1 · (Z̃ ⊕R2), that is

b = a · Z ⊕R . (10)

We recall that a refers to a loop index in Algorithm 1 and that its value can be
chosen by the attacker among {0, · · · , 2n− 1}. The sensitive variable Z is the
sensitive S-box input and it can be written as a function of a public variable
X and a piece of secret data k?. The way our attack is performed depends
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on this function which can take several forms. In the sequel we consider two
usual cases.

The first one is referred as the linear case and assumes:

Z = X ⊕ k? .

This occurs for instance in AES and in FOX algorithms for the first round
S-box calculation.

The second case, referred as the non-linear case, assumes the existence of
a non-linear transformation φ such that:

Z = φ(X ⊕ k?) .

This occurs for instance in the AES algorithm implemented using the com-
posite field method [10, 11] (see [11, §4.1] for details). In that case, φ is the
non-linear (8, 4)-function which from a ∈ F256 processes d ∈ F16 according to
the notations of [10, 11].

The linear case. We consider here the case where the targeted bit can be
expressed as b = a · (X ⊕ k?)⊕R that is:

b = a ·X ⊕ a · k? ⊕R . (11)

The bit b in (11) only depends on one secret binary value a·k?. Therefore, a
DPA on b will provide at most one bit of information on k?. Hence, recovering
the whole secret k? requires to perform a DPA attack on b for t different loop
indices a0, ..., at−1.

When mounting a DPA attack on b for a particular loop index a, the
sequence of guesses can only take one of the two following forms: (a · xi)i or
(a · xi ⊕ 1)i. According to (6), these two sequences result in two differentials
that are opposite one to each other. The attacker does not know a priori
which of these differentials correspond to the correct key hypothesis. Indeed,
depending on the device, the polarity (−1)s of the good differential ∆a·k? may
be positive or negative. In other terms, the DPA allows the attacker to recover
the value of a · k? ⊕ s, where k? and s are unknown.

Since the polarity s is the same for all the loop indices a, then performing t
DPA attacks for t different loop indices a0, ..., at−1 provides the attacker with
a system of t equations and n + 1 variables (the polarity bit s and the n bits
of k?). Solving this system requires to have at least t = n+1 equations. After
choosing n indices ai having linearly independent vectorial representations in
Fn

2 and after defining an = a0 ⊕ a1, it can be checked that solving the system
allows the attacker to unambiguously determine the value of k?.
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The non-linear case. We now consider the case where b satisfies:

b = a · φ(X ⊕ k?)⊕R . (12)

For a non-linear φ, the attack is analogous to a classical DPA on some output
bit of e.g. a DES or AES S-box [9]. The non-linearity of φ ensures that for
the correct key hypotheses a peak of maximal amplitude will appear while for
most other key hypothesis no peak will appear. This enables to fully recover
k?.

In this section, we have described how to exploit the leakage on a sensitive
bit which is masked with a biased random bit. In the linear case, the attack
requires to perform n + 1 DPAs while only one DPA is needed in the non-
linear case. In the following section, we present experimental results for these
two attacks.

5 Experimental Results

We put into practice the attacks described in Section 4.2 for two S-box im-
plementations on an 8-bit smart card. Both attacks exploited the power con-
sumption resulting from several S-box calculations.

Regarding the linear case, we performed the attack on the S-box cal-
culation of FOX algorithm during the first round protected by the method
described in [11]. In this case, the sensitive bits we targeted are of the form
a · (X ⊕ k?) ⊕ R, where a,X, k? ∈ F4

2. Following the outlines of the attack
described in Section 4.3 for the linear case, we have applied 4 + 1 DPAs
on five different loop iterations of Algorithm 1, namely one DPA for every
a ∈ {1, 2, 4, 8, 3}.

Figure 1.a represents the value of
∑3

i=0 ∆ai·k, where ai = 2i, obtained
after 20 000 executions of the algorithm. The full black curve corresponds to
the correct subkey value k? and the dotted black curve corresponds to the
complementary of this value. As expected, these two candidates are such that
the highest peaks of the differential vectors ∆ai·k are either all positive or all
negative, hence leading to the highest amplitudes for

∑3
i=0 ∆ai·k. As explained

in Section 4.3, we then computed the differential ∆a·k? for a = a0 ⊕ a1 = 3.
Figure 1.c illustrates this computation. The polarity of the highest peak of
∆3·k? being negative, one deduces that the correct subkey value k? corresponds
to the full black curve in Figure 1.a.

Figures 1.b and 1.d represent respectively the convergence of the peak of
maximal amplitude for

∑3
i=0 ∆ai·k and for ∆3·k? according to the number of

power consumption measurements. By analyzing these curves, we deduce that
the value of the 4-bit subkey k? is recovered by using about 8 000 executions
of the algorithm.
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Fig. 1. Practical DPA attack – the linear case.

Regarding the non-linear case, we attacked the AES S-box calculation
using the composite field method in order to perform the inversion in F4

2

instead of F8
2 and the method of [11] to protect this inversion (see [11, § 4.1]

for more details). In that case, the targeted bit is of the form a ·φ(X⊕k?)⊕R
where X, k? ∈ F8

2, a ∈ F4
2 and φ : F8

2 → F4
2. Figure 2.a represents the value

of the differentials ∆k’s for k ∈ F8
2 and a = 1, when 200 000 executions of

the algorithm are used. It can be seen that the correct subkey k? (plotted in
black) is easily distinguishable.

Figure 2.b represents the convergence of the maximum peak amplitude
for the differentials according to the number of power consumption measure-
ments. The analysis of these curves shows us that the value of the 8-bit subkey
k? is recovered after about 100 000 executions of the algorithm.
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Fig. 2. Practical DPA attack – the non-linear case.

6 An Improved Version of a Secure S-box Calculation

In the following we propose an improvement of Algorithm 1 that allows to
circumvent the flaw depicted in Section 4.1 and also leads to a more efficient
implementation.

The new algorithm is still a secure calculation of a Fourier Transform
but it is based on a slightly modified version of (3) which we rewrite in the
following form:

(−1)R2F (Z) + R3 mod 2n

=

 1
2n

R′ +
∑
a∈Fn

2

F̂ (a)(−1)R2⊕a·Z̃⊕a·R1 mod 22n

 , (13)

where Z̃ = Z ⊕R1, R2 ∈ F2, (R1, R3, R4) ∈ (Fn
2 )3 and R′ = 2nR3 + R4.

After a brief look at (13) (and before the deeper analysis conducted later
on in this section), we can notice that the sensitive variable a·Z is now masked
with the uniformly distributed random bit R2. Furthermore, it may be noticed
that the exponent in the summation in (13) involves less operations than in
(3).

Let us denote by SP the function X, Y 7→ X · Y and by SFT the function
X, T 7→ F̂ (X)(−1)T . As we prove in this section, Algorithm 2 implements (13)
securely.

Algorithm 2 First order Secure S-box calculation

Inputs: A masked value Z̃ = Z ⊕R1 and the mask R1
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Output: The 3-tuple ((−1)R2F (Z) + R3 mod 2n, R3, R2), where R2 and R3 are random
values.

1. Generate a random bit R2

2. Generate two n-bit random R3 and R4

3. result← 2nR3 + R4

4. for a from 0 to 2n − 1 do

5. T1 ← SP(a, Z̃) [T1 = a · Z̃]

6. T1 ← T1 ⊕R2 [T1 = R2 ⊕ a · Z̃]

7. T2 ← SP(a, R1) [T2 = a ·R1]

8. T1 ← T1 ⊕ T2 [T1 = R2 ⊕ a · Z]

9. T1 ← SFT(a, T1) [T1 = F̂ (a)(−1)R2⊕a·Z ]

10. result← result � T1 [result = (2nR3 + R4) �
∑

i∈{0,a} F̂ (i)(−1)R2⊕i·Z ]

11. end

12. result← result� n [result = (−1)R2F (Z) + R3 mod 2n]

13. return (result, R3, R2)

Efficiency Analysis. Although Algorithm 2 is more secure than Algorithm 1,
it is also faster. For each loop, Algorithm 2 requires two XORs, two calls to
the function SP and one call to the lookup table SFT. Therefore, for each
loop Algorithm 1 performs 2 extra multiplications compared to Algorithm 2.
Combining this result with the fact that function SP is slightly faster than
function SSP, we deduce that our method is faster than the one proposed
in [11].

Security Analysis. In Table 1, we list the intermediate variables of Algo-
rithm 1 that involve a sensitive variable. The values which only depend on
the loop counter or on a random value are obviously omitted.

Step Instruction Masked Value Mask(s)

5.1 register ← Z̃ Z̃ R1

5.2 T1 ← SP(a, Z̃) a · Z̃ a ·R1

6 T1 ← T1 ⊕R2 R2 ⊕ a · Z̃ R2 ⊕ a ·R1

8 T1 ← T1 ⊕ T2 R2 ⊕ a · Z R2

9 T1 ← SFT(a, T1) F̂ (a)(−1)R2⊕a·Z R2

10 result ← result � T1 (2nR3 + R4) �
∑

i F̂ (i)(−1)R2⊕i·Z (R2, R3, R4)

11 result ← result� n (−1)R2F (Z) + R3 mod 2n R3

Table 1. The different sensitive values manipulated during Algorithm 2.
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As it can be checked in Table 1, the intermediate variables manipulated
at Steps 5.1, 6, 8, 9, 10 and 11 are additively masked with a uniformly dis-
tributed random variable (resp. R1, R2 ⊕ a · R1, R2, R2, R3||R4 and R3)
which is independent of the sensitive variable. Those intermediate variables
are therefore independent of the sensitive variable Z.

The intermediate variable at Step 5.2 can be rewritten a ·Z⊕a ·R1. When
a equals 0, this variable equals 0 whatever Z and R1. Otherwise, for every
a 6= 0 the variable a · R1 is uniformly distributed and independent of Z. We
deduce that a · Z ⊕ a ·R1 (and hence a · Z̃) is independent of Z whatever a.

Therefore, we have proved that all the intermediate variables manipulated
during the execution of Algorithm 1 are independent of Z, which implies that
our method is secure against first order DPA.

7 Conclusion

In this paper, we have shown that a provably secure DPA countermeasure
published at CHES 2006 has a flaw. We have explained how this flaw can be
exploited to mount an efficient attack on S-box implementations protected
by this countermeasure. Our attack is not only theoretical since we have
successfully put it into practice on two different S-box implementations: the
AES S-box using the composite field method and the FOX S-box.

Finally, we have proposed an improvement of the CHES 2006 counter-
measure for which we prove the resistance against first order DPA. Moreover
we showed that our improvement is not only more secure but can also be
implemented more efficiently than the original countermeasure.
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A Distribution of the Differentials

In this section, we investigate the distribution of the differential ∆k when
the attack targets a masked bit b = f(X, k?) ⊕ R where R is a random bit
satisfying P [R = 0] = 1

2 + ε. Our analysis includes the unmasked case by
setting ε to 1

2 .
We make the usual assumption that the leakage has a Gaussian distribu-

tion:

L(b) ∼ N
(

µ− δ

2
(−1)b, σ2

)
, (14)

where µ, δ and σ are constants and δ equals E[L(1)]− E[L(0)].
The leakage measurement li obtained for the ith encryption can thus be

expressed as:

li = µ− δ

2
(−1)b?

i +ri + ηi , (15)

where, for the ith encryption, b?
i is the unmasked value of b (i.e. b?

i = f(xi, k
?)),

ri is the mask value and ηi is the noise in the leakage measurement.
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We make the additional assumption that for every key hypothesis k, the
sequence of guesses satisfies: #{i; bi = 0} = #{i; bi = 1} = N/2. This
assumption is realistic since the functions f(·, k) are usually balanced (i.e.
#{x; f(x, k) = 1} = #{x; f(x, k) = 0}) and since the xi’s are usually uni-
formly distributed. It allows us to rewrite (6) as:

∆k = − 2
N

(
N∑

i=1

(−1)bi li

)
. (16)

This relation together with (15) leads to:

∆k =
δ

N

N∑
i=1

(−1)bi+b?
i +ri − 2

N

N∑
i=1

(−1)biηi

=
δ

N

 N∑
i=1

bi=b?
i

(−1)ri −
N∑

i=1
bi 6=b?

i

(−1)ri

− 2
N

N∑
i=1

(−1)biηi

Recalling that α is the ratio of the bi’s that are wrongly predicted (i.e. α =
#{i; bi 6= b?

i }/N) and after rewriting (−1)ri as 1− 2ri, we get:

∆k = δ(1− 2α) +
2δ

N

 N∑
i=1

bi 6=b?
i

ri −
N∑

i=1
bi=b?

i

ri

− 2
N

N∑
i=1

(−1)biηi .

Since ri is distributed over F2 with P [ri = 1] = 1/2 − ε then for every
I ⊆ {1, · · · , N}, the sum

∑
i∈I ri has a binomial distribution with parameter

(#I, 1/2 − ε). Moreover, since ηi has a Gaussian distribution N (0, σ2), then
the sum

∑N
i=1(−1)biηi has a Gaussian distribution N (0, Nσ2). This way, we

obtain:

∆k ∼ N
(

δ(1− 2α),
4σ2

N

)
+

2δ

N
B
(

αN,
1
2
− ε

)
− 2δ

N
B
(

(1− α)N,
1
2
− ε

)
.

After approximating B(n, p) by N (np, np(1−p)) (which is almost exact when
n ≥ 30, np > 5 and n(1− p) > 5), we finally get:

∆k ∼ N
(

2ε× δ(1− 2α),
4σ2 + δ2(1− 4ε2)

N

)
.

This relation shows that the biased masking results in a reduction of the
expectation of ∆k and in an increase of its variance. The expectation is divided
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by a factor 1/2ε while its variance is multiplied by a factor 1+δ2(1−4ε2)/σ2.
When the leakage signal-to-noise ratio is low, i.e. σ � δ, then the biais has
a weak influence on the variance and its main effect is the reduction of the
expectation. According to [3] this results in an increase of the number of
required leakage measurements by a factor (1/2ε)2. If the leakage signal-to-
noise ratio is not that low, the increase of the variance is significant and the
number of required leakage measurements is multiplied by (1/2ε)2

(
1+ δ2(1−

4ε2)/σ2
)
.

16


